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ABSTRACT 

Securities trading is accomplished through the execution of orders. Admissible orders 
(e.g., market orders, limit orders) give rise to discontinuous aggregate demand functions, 
composed of many "steps." Demand smoothing, or the balancing of excesses due to such 
discontinuities via intervention, is one of the most basic functions that could be assigned 
to  a "specialist." When the specialist's "affirmative obligation" is fully specified, his or 
her activity can in principle be automated. This paper is an attempt to assess, via 
simulation, some of the ramifications of using a "programmed specialist," whose auto- 
mated market making is limited to demand smoothing. A number of alternative rules 
of operation are simulated. Several of the rules performed well, especially the extremely 
simple rule that calls for the (computerized) specialist to minimize new absolute share 
holdings in each security a t  each tradingpoint via "total" (as opposed to "locaI") demand 
smoothing. Our results indicate that the underlying costs of demand smoothing are on 
the order of a fraction of a penny per share traded even in relatively thin markets. 

THE FUNCTION OF THE specialist as  a "designated market maker" has tradition- 
ally been taken for granted by market participants while being practically ignored 
by financial and economic theory. Recently, this function has become the subject 
of' increasing scrutiny. Current discussions in connection with the possible 
reorganization of the exchanges into a National Securities Market have raised 
serious questions concerning the roles (if any) that should be assigned to spe- 
cialists in this market, especially if the order clearing mechanism is to be highly 
automated.' On the theoretical side, the specialist's function has become one of 
the focal points in an emerging new field of financial theory which concentrates 

*University of California, Berkeley, Tel Aviv University, and BARRA, Berkeley, respectively. 
This is an abridged version of [19], which is available upon request from the authors (School of 
Business Administration, University of California, Berkeley, Califronia 94720). Among other things, 
the comprehensive version contains a detailed description of the simulated demand generation process 
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' A fairly comprehensive presentation of the various viewpoints is available in Bloch and Schwartz 
[71. 
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on modeling the microstructure of securities market systems.2 At this early stage 
in the field's development, the microstructure literature offers no comprehensive 
theory (or theories) of the specialist's role. Rather, individual studies relate to 
specific aspects of the specialist's activity.~ollectively, these studies attempt to 
identify circumstances in which intervention in the process of order execution is 
either necessary or desirable, and to evaluate alternative ways of effecting such 
intervention. The present paper extends this analysis and its potential contri- 
bution to policy decisions by studying in some detail the central function of a 
designated market-making entity. We demonstrate that the rendered service is 
indeed needed, that it can be offered at  a very reasonable cost, and that it is also 
highly amenable to full automation. 

In economic theory, the traditional view of the market as a Walrasian auction 
assumes all the necessary conditions for the existence of "equilibrium prices," 
i.e., prices at  which the "competitive demand schedules" based on the traders' 
underlying preferences are simultaneously cleared in all markets. The trades 
which are executed at  those prices produce Pareto-efficient allocations, and in 
this context there is thus no need and no room for a "specialist" that trades on 
the basis of motives other than his or her own current portfolio preferences. 

Of course, the modern theory of securities markets operation is less concerned 
with the existence of "ideal" trades than it is with the way trades can operationally 
be attained. In practice, trades must be based on outstanding orders, which form 
an unavoidable link between the traders with their underlying preferences and 
the market system (this is discussed in considerable detail in Beja and Hakansson 
[4]). One of the critical limitations on the efficient operation of actual securities 
markets thus involves the inherent differences that must exist between the orders 
submitted in those markets and the idealized demand schedules of economic 
theory. For example, today's exchange procedures do not admit "joint" limit 
orders that condition transactions in one asset on the prices of other assets. In 
addition, a trader cannot, as a practical matter, submit even a rough approxi- 
mation of a continuous demand schedule in the great majority of cases but must 
be content with the opportunity to submit piecewise linear segments (in the form 
of "market" and "limit" orders). Consequently, the natural trades that would be 
generated by the current orders may differ from the ones that would be most 
appropriate for the current profile of the investors' true preferences. More 
importantly, the discrete nature of the submitted orders gives rise to a discontin- 
uous aggregate excess demand function, so that a price that clears the outstanding 
orders will generally fail to existe4 Thus, for trading to occur, the use of discrete 

2Microstructure theory is devoted to explicit study of such aspects as the trade execution 
mechanism and the behavior of the participating agents and institutions. For a very limited sample, 
see Garman [17], Beja and Hakansson [4], Cohen, Maier, Schwartz, and Whitcomb [9-111, Garbade 
and Silber [16], Stoll [27], Goldman and Beja [IB], Beja and Goldman [3], Garbade and Sekaran 
[15], Ho, Schwartz, and Whitcomb 1221, and Mendelson [24, 251. 

For earlier work in this area, see Black [6], Smidt [26], Tinic and West [28], and Barnea [2]. For 
more recent studies, see, e.g., Beja and Hakansson [5], Goldman and Beja [18], and Cohen, Maier, 
Schwartz, and Whitcomb [13,14]. See also Garman [17], Amihud and Mendelson [I], and Mendelson 
[24, 251. 

'The  easiest way to see this is to consider two discrete functions, one upward sloping and one 
downward sloping; two such functions generally have no point of intersection. 
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orders inevitably requires either 1) direct intervention by a "market maker," or 
2) the rationing of either buy or sell orders. Having a specialist who trades for 
his or her own account is the most convenient way to implement the market- 
making approach.5 We call the function of balancing excesses due to disconti- 
nuities of the aggregate orders demand smoothing. "Keeping the market going" 
by carrying out this function is the affirmative obligation of the specialist as a 
designated market maker.6 

To illustrate, suppose that the most recent price of a given security is $10 per 
share, and that the currently outstanding orders are: (1) a market sell order for 
200 shares, (2) a limit sell order for 200 shares a t  $91/2 or better, and (3-4) two 
limit buy orders, for 300 shares each, a t  $g3h or less. Then, a t  all prices below 
$91h there is an excess demand of 400 shares, at  all prices between $91/2 and $93h 
inclusive there is an excess demand of 200 shares, and at  all prices above $93h 
there is an excess supply of 400 shares, so that a market clearing price does not 
exist (because the traders' aggregate submitted demtlnd is a discontinuous func- 
tion of the price). Clearly, the above orders could..be entries in the "book" in 
either a continuous market or a call auction environment. 

In the preceding example, there are numerous alternatives available to the 
market-making specialist in clearing the market by "smoothing" the discontin- 
uous demands submitted by the traders: he or she can buy 400 shares a t  some 
price above $93/4, sell 200 shares at  a price between $g1/2 and $93h inclusive, or 
sell 400 shares at  some price below $gl/z. Or a priority-oriented rule (of the type 
used on the New York Stock Exchange), with queues based on price, time, size, 
etc., or a rule based on rationing can be used. Which choice is best? It  is the 

One might, as a practical matter, wonder whether discontinuities in outstanding demand are really 
typical phenomena that significantly hamper the trading process. I t  might superficially seem, for 
example, that the aggregation of a large number of orders, where the few orders of each investor 
constitute a substantially discontinuous approximation to underlying demand schedule, would tend 
to become approximately continuous as the number of' traders gets very large. However, a number of 
arguments indicate that such discontinuities are not untypical even in rather thick markets. First, 
note that trading in the major exchanges in the U.S. is for the most part limited to prices which are 
set in exact eighths of a dollar, so that any down-sloping demand must have "discontinuities" (these 
discontinuities would not be alleviated by going to "decimal" pricing, for example). Second, the price 
limits that individual investors choose to set for their limit orders are not purely random choices. 
Rather, they are all jointly related to the previous price, and would in many cases tend to cluster 
around a relatively small number of "natural" choices. (See Cohen, Maier, Schwartz, and Whitcomb 
[ 1 2 ]  for a model where traders use elaborate strategies in determining the price limit in their orders.) 
Ultimately, the strongest argument for the empiricaI relevance of discontinuities in the investors' 
aggregate submitted demand is the persistence of substantial bid-ask spreads in security prices; if 
aggregate demand were practically continuous, no bid-ask spreads would remain effective. 

"ue to space limitations, rationing is not considered in this paper. For an analysis of such 
approaches to securities trading, see Beja and Hakansson [ 4 , 5 ,  pp. 148-521. 

Other dimensions may, of course, be imputed to the specialist's "obligation." For example, it may 
be desirable for the specialist to intervene to avoid "extreme" price fluctuations caused by small 
orders if i t  is believed that the orders reflect some idiosyncratic random phenomenon which is 
unrelated to basic values (as reflected by investors' preferences and beliefs). In other words, the 
specialist can intervene in order to offset thinness in outstanding orders and preserve the current 
price if he or she believes that this price reflects best the investors' overall underlying demands. See 
also Goldman and Beja [ l a ] .  
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purpose of this paper to throw light on the implications of some of the possible 
decision rules that might be followed.' 

In the present paper, we are interested in the "demand smoothing" aspect of 
the market-making functions of a specialist operating in an organized exchange.' 
In particular, we attempt to assess, via simulation, some of the ramifications of 
using a "fully automated specialist" whose task is limited to "demand smoothing." 
The analysis is restricted to rules under which all orders received in a given 
period are executed at  the same price and in f ~ l l . ~ " ~  Within this family, a number 
of alternative, and initially equally plausible, rules of operation are simulated. As 
described in more detail in Section 11, all of the rules examined seek to in some 
sense minimize the "noise" introduced by the microstructure environment. For 
each rule, we evaluate the extent of the specialist's participation in trading, the 
behavior of stock and cash positions, and net profits or losses. By implication, 
this is indicative of the basic costs of alternative methods of demand smoothing. 
In addition, we study how the preceding quantities depend on the number of 
securities that the specialist handles. 

The paper proceeds as follows. A general description of the simulation model 
is presented in Section I. Section I1 describes the different rules of market making 
investigated in this study. The results of the simulations are summarized in 
Section 111. Section IV examines the implications relative to the social costs of 
the demand smoothing function, while Section V contains a concluding summary. 

I. The Simulation Model 

Our model describes an environment with I investors (synonomously also called 
traders) trading in S securities. When an investor wishes to trade, one or more 
orders are submitted to a central marketplace where these orders are recorded in 
the "book" and executed according to a well-specified operating procedure. 
Trading periods form a sequence of points, which may possibly be randomly 
spaced on the time axis, and we index these points by t = 1, 2, . . . All trades in' 
a security executed at  the same period have the same dollar price per share, 
stated in eighths of a dollar. Short positions are possible. There is a single 

In current practice, the human specialist intervenes on the basis of "professionaI judgment." 
However, the specialist's discretion in setting prices is obviously not unlimited. I t  is effectively 
constrained by explicit rules and by mores, through external control, and through self-imposed 
etiquette. 

See also Beja and Hakansson [5, pp. 153-591. 
Whether the exchange is thought of as operating in "continuous" or "call auction" fashion is 

essentially unimportant since, from the perspective of demand smoothing, the central difference 
between the two is the thinness or thickness of orders a t  the time of execution. However, since the 
execution of many orders simultaneously a t  the same price, and an  absence of priority features, are 
more characteristic of call markets than continuous markets, the present setting is probably somewhat 
closer in spirit to  a call auction environment. 

For a comparison between batch or call trading and continuous trading, see Ho, Schwartz, and 
Whitcomb [21, esp. pp. 4-51 and [22]. For a recent review of the trading system at  the New York 
Stock Exchange, see Carrington [9]. 

lo See Cohen, Maier, Schwartz, and Whitcomb [14] for a simulation study of a cont~nuous auction 
market from a somewhat different perspective. 
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"specialist," who operates as a "designated market maker" and takes short and 
long positions according to some rule. His or her portfolio is denoted by the vector 
q: = ( q ? t ,  q&, . . ., q!,), where q:, is the number of shares of security s held by 
the specialist immediately after the trading at  time t is completed. The post- 
trading position a t  time t will be summarized by the pair (c,, u,), where c, is the 
amount of cash on hand and ut is the value of the security portfolio. We study 
the behavior of (c,, u,) and q? on the assumption that the specialist received no 
income, either on capital or from his or her services, and that the cost of capital 
(e.g., when ct is negative) is zero. One reason for this assumption is that one of 
our objectives is to ascertain what kinds of fees the specialist needs in order to 
perform his or her services under different market-clearing rules. 

Letting ij: = (q? , ,  . . . , ij;,) denote the specialist's vector of share purchases a t  
time t and P, the vector of effective trading prices at  time t, we have 

For each reference, we shall use the origin as our starting point, and let co = oo 
=q: , ,=O,  f o r s = l ,  ..., S. 

The simulation model has two main parts. In the first part, which we call the 
demand generation process, we simulate the generation of the investors' orders. 
In each trading period, the generated orders, in aggregated form, then activate 
the other main part of the simulation model-the trade execution mechanism, 
which uses an automated market-making specialist to achieve market clearing. 

A. The Demand Generation Process 

The investors' orders are generated in each trading period by simulating their 
underlying (continuous) demand functions, and then approximating each demand 
function by a random number of orders. New demand functions are generated by 
jointly correlated random shifts in earlier demand functions. Each trader's 
submitted demand with respect to a given security may involve a market buy or 
sell order, one limit buy or sell order, or a set of limit buy and/or sell orders a t  
various price limits." The trader may also choose to avoid trading in a given 
period and submit no orders. Changes in the investors' demands for the different 
securities are positively correlated to reflect changes in net asset positions as  
well as factors common to the whole market. The shifts also involve idiosyncratic 
changes in each investor's relative demands for the various securities, reflecting 
time changes in his or her tastes or current beliefs. The demand shifts follow a 
nonstationary geometric random walk in which expected demands, and hence 
expected prices, increase over time. All demands are decreasing in price.12 The 

l 1  Market and limit orders are in essence "discretized" demand schedules, which may be viewed as 
cost-benefit efficient attempts to capture the essential features of the idealized demand schedules. 
Market and simple limit orders approximate demand schedules via two vertical line segments or less, 
while more multiple limit orders employ three or more line segments (see [19]). 

The complexities introduced by relaxation of this property are not considered in this paper. 
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limit orders involve price limits which are restricted to a k20% neighborhood of 
the previous price for the asset in question. If the submitted demands happen to 
drive the price in one jump beyond this specified neighborhood, the model 
withholds trading in the security but signals the boundary price in question to 
investors. As in real-world markets, individual orders for different assets are 
segmented (although correlated). That is, truly joint orders in which, for example, 
one order is conditioned on the execution of another have been ruled out as 
unacceptable by the market system. 

Compared with the major exchanges, our simulation model appears to have a 
relatively small number of investors, with a relatively large average number of 
orders per investor and a relatively low percentage of market orders. Note, 
however, that the aggregation of all market orders will at most shift the aggregate 
demand to the left or to the right, but will not affect discontinuities so that the 
exact proportion of market orders is of no real consequence from the perspective 
at hand. In addition, patterns of aggregate demand, very similar to the ones 
generated in our simulation, also arise when there are many more traders 
submitting fewer orders. Thus, our choice of configuration for the demand 
generating process is in the spirit of efficient model design. As is well known, it 
is good professional practice in simulation studies not to,.attempt an "exact" 
replication of the environment, but rather to "amplify" intentionally the pertinent 
aspects.13 Thus, we simulate an extremely thin market n@t,because we believe it 
to be typical, but because it is precisely in such marke$s that the specialist's 
market-making function is most important. 

B. The Trade Execution Mechanism 

For each security, the investors' orders generated by the demand generation 
process are recorded in "the book," and summed up to give the security's aggregate 
demand schedule, showing for each tentative price the net outstanding orders for 
that security a t  that price. An example of an aggregate excess demand schedule, 
plotted for prices which are given in eighths of a dollar, is presented in Figure 1. 
The aggregate demand function is (necessarily) down sloping and (typically) 
quite "nonlinear." Since all price limits for the individual limit orders are set 
within a range of &20% of the previous price, the aggregate excess demand 
schedule may be considered as extending vertically upwards from Dl a t  the upper 
end (PI) of the relevant price range, and vertically downward from D, a t  the 
lower end (P,) of that range. Given the discrete nature of the excess demand 
schedule, there is (typically) no price a t  which excess demand is exactly zero. 

The book is governed by the simulated specialist. Given the aggregate demand 
schedule, the specialist selects some price in the relevant price range. Then, all 
the outstanding orders are executed which are effective a t  that price. When these 
orders do not happen to clear exactly, the specialist sells shares from his or her 
own account at the selected price if there is a positive excess demand a t  that 
price, or buys for this account if there is a negative excess demand (a net supply) 

l 3  For example, see Hammersley and Handscomb [ Z O ] ,  especially the parts concerning the so-called 
"importance sampling." In importance sampling, one intentionally overrepresents the "more impor- 
tant" parts of an underlying population, so that a relevant aspect can be efficiently studied through 
a smaller sample. 
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Figure 1. Excess Demand Schedule 
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at  the selected price. The specialist's decision is programmed to follow a strict 
rule, which prescribes a well-defined course of action for every conceivable excess 
demand schedule. 

A special proviso should be noted here. In extreme cases, it may happen that 
all excess demands for the prices in the relevant range are positive (i.e., that Dl 
is to the "right" of 0 in Figure 1) or that all excess demands for prices in the 
specified range are negative (i.e., that D, is to the left of 0 in Figure 1). In the 
former case, price P,, = 1.2 Ps,l-l  (which corresponds to Dl) will be announced 
but no trading takes place.14 This is because the "true" equilibrium price is then 
clearly greater than 1.2 Ps,l-l and intervention by the specialist in filling the 
excess demand a t  1.2 Ps,,-l would on balance be disadvantageous since he or she 
would be selling stock a t  a price clearly below the (unknown) "true" equilibrium. 
Similarly, when all excess demands in the range [0.8 Ps,t- l ,  1.2 Ps,,-l] are negative, 
price Pst = 0.8 Ps,,-, is "called" but there is no trading. 

This procedure has several real-world analogues: the suspension of trading in 
the presence of news implying sharp price changes is one, and the practice of 
limiting permissible price changes in a single day is common in commodity 
markets and can also be found on the Tel Aviv Stock Exchange, for example. 
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11. Some Alternative Rules of Automated Market Making 

0 Excess Demand 
for Security s 

When excess demand schedules are not continuous, there will, as noted, be no 
price for which excess demand is zero (except perhaps by pure chance). Given 
discrete demand schedules, trading can therefore occur only by rationing soma 
quantities (those of sellers or those of buyers) or by intervention of an additional 

'' In the actual simulation, prices are given in eighths (i.e., 10, 101/a, 10Lh, 103/a, etc.) in accordance 
with extant market practices. The quantities 1.2 P,,,-, and 0.8 Pa,,-, are therefore rounded (upkdrd) 
to the nearest 1h. 
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party such as a specialist operating as a designated market maker. The present 
paper is concerned only with the latter possibility. We are interested in opera- 
tional rules that  can govern the specialist's market-making function under a wide 
range of contingencies. Our purpose here is both to identify rules which appear 
reasonable on an a priori basis and to examine their properties via simulation. 

We are unaware of any developed theories on the subject of demand smoothing. 
However, if one takes the view that prices should to the greatest extent possible 
be determined by investors, i t  follows that the market maker's influence should 
in some sense be "minimized." But in order for his or her impact to be small, i t  
is clearly necessary for the market maker's inventories to be kept low and 
participation i'n any given trade to be limited. Consequently, the majority of the 
rules examined here attempt to make investor demands the overwhelming deter- 
minants of prices and trades, by explicitly minimizing some indicator of market 
interference by the specialist. 

The rules which we study fall into two categories. In the first category, the 
specialist's freedom to determine the trading price is restricted to a very narrow 
range, and the rules are accordingly labeled "local." Rules in this category are 
described first. We later describe other rules, where the specialist can choose the 
trading price in a considerably larger range. 

A. Local Demand Smoothing 

Consider the excess demand schedule (such as in Figure 1) on either side of 
zero excess demand, i.e., the points Dh and Dk+l. One possibility would be to let 
the specialist pick either Dk or Dk+l according to some further specified rule. In 
the first case, the specialist would buy -qk shares a t  price Pk ,  thereby incurring 
an expenditure of -qkPk dollars. In the second case, the specialist would sell qk+' 
shares at  Pk+', receiving qk+'Pk+' in compensation. We shall refer to rules which 
always restrict the specialist to a choice between points Dk and Dk+l as  local 
demand smoothing rules. In such rules, the specialist seems as though he or she 
atttempts to minimize participation in each trade. The results of our simulation 
indicate, however, that these rules do not necessarily minimize some overall 
measures of the specialist's interference in the market. 

A . l  The Infeasibility of Price Smoothing-How might one choose between Dk 
and Dk+'? In view of the emphasis in extant markets on "price smoothing,"15 
one could perhaps consider as a natural candidate for P, the point which 
minimizes the absolute change from the previous price P,-,, that  is, the price- 
quantity pair corresponding to 

(with ties decided by minimizing I qfP1 I ) .  The problem with this rule is that 
although the specialist's expected inventory of shares over time is zero, the 

16For example, one of the demands placed on the specialist is that he or she " . . . maintains a 
continuous market with price continuity" (see, e.g., Leffler and Farwell. [23]).  However, the affirmative 
obligation to stabilize prices apparently exists only in the U.S. (see Ho, Schwartz, and Whitcomb 
[211). 
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variance of the inventory of shares grows without bound.16 Thus, the probability 
that the specialist will eventually hold practically all shares, or be short a similarly 
absurd number of shares, tends to 1. This suggests that any rule that is inde- 
pendent of the specialist's inventories breaks down, a fact already noted by 
Garman [17] in a related context. Our simulations confirmed this as well; in a 
typical case, the specialist using rule (4) was, after 250 periods, short more than 
66% of the outstanding shares, after having reached a maximum long position of 
more than 73% in period 176. 

We conclude then that when demands change in response to independent 
events, price stabilization, despite its institutional acceptance, raises not only 
theoretical questions but also serious practical difficulties.I7 This is not to say 
that "interference" with respect to price, without regard to inventories, for the 
purpose of attaining a "true" equilibrium is undesirable or unworkable in all 
contexts. The success of such policies, however, will in general depend critically 
on the quality of the information that guides them. 

A.2 Some Feasible Local Demand Smoothing Rules-In the present context, 
then, any workable rule of interference used by the specialist must pay careful 
attention to pre-trading position ( C , - ~ ,  q?-,). Table I summarizes a set of local 
demand smoothing ruler that were examined in a market with a single security 
being traded. 

The first rule, LS1, is extremely simple: it instructs the specialist to interfere 
via a purchase if a long position is not currently held, and to sell if it is. The next 
two rules, LS2 and LS3, focus on only one of the two quantities ct and q?, while 
LS4 and LS5 sum absolute departures from zero of both cash and the value of 
the portfolio, giving each equal weight in the process. Rule LS6 minimizes the 
sum of absolute departures from zero of cash, the value of securities, and the net 
position c, + u,. Rules LS5a, LS5b, and LS5c modify LS5 by placing constraints 
on the specialist's maximum absolute position in the security. Thus, in LS5a, for 
example, the specialist is precluded from being more than 3% long or short; when 
selection of either Dk or Dk+l fails to satisfy this requirement, no trading will 
occur but a new price is announced according to rule LS5. Similarly, rule LS5d 
limits participation in any given trade to 50%. 

Several of the preceding (single-security) demand smoothing rules were adapted 
to the case in which several securities are simultaneously traded (see Table 11). 
LM1 is actually LS3 applied independently to each security. LM2 is essentially 
LS5, with a separate cash account being maintained for each security. LM3 
modifies LM2 by equalizing, via redistribution, the cash position associated with 
each security as soon as trading is compIeted. Only LM4 is a fully interactive 
rule: the specialist selects that combination of points from the S pairs (Dsk, 
Ds,k-l), for all s, which minimized I c, I + I u, I .  

16 Th. ' IS IS because, under our assumptions, increments to  the inventories of the specialist would be 
independent, with zero drift. 

' I  The same problem can occur (and did occur) in our simulation when the new price is set  using 
more extreme price smoothing, i.e., by adjusting Pt-, ( to get Pi)  by only a fraction of the price chafige 
indicated in Equation (4). 
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Table I 

Local Demand Smoothing Rules, Single Security 

LS3 I Min 1 qp 1 subject to (1) and (5),  each t 
lDbJ'h+ll 

LS1 

LS2 

LS4 I Min ( c.1 + I q?P,-,  ( I subject to ( I ) ,  (3), and (51, each r 
IDbsDk+, I  

1 D, if qp-I a o 
Select , each t 1 ilk+, it qo, > O  

Min I r, I subject to (3) and (5), each t 
IDb.Db+ll 

LS5 I Min { I r, I + I v.1) subject to (21, (3). and (5). each t 
l D h . D b + ~ l  

LS5a I Min { 1 c ,  + 1 u,l ) subject to (2), (3), (5), and (7 ) ,  qp s 0.036, each t. If no 
IDc.Dk+xI 

solution exists, set (c,, qf) = (el-,, q:-J and choose P, as if constraint (7) were 
absent. 

LS5b I Min { 1 c, 1 + 1 ut 1 ) subject to (2), (3), (51, and (8), qP 5 0.026, each t. If no 
I D ~ . D ~ + I I  

solution exists, set (c,, qf )  = (c,-,, q?-'-,) and choose P,  as if constraint (8) were 
absent. 

LS5c 1 Min ( 1 + I ut I ] subject to (2), (3). (51, and (9), q: r 0.01Q, each t. If no 
IDb,Db+,l 

I solution exists, set (c,, q?)  = (c,-,, q l - l )  and choose P, as if constraint (9) were 

1 0), each t. If no solution exists, set (c,, qp) = (ct-,, qy-l) and choose P, as if 

LS5d 

1 constraint (10) were absent. 

absent. 

Min ( 1 c, I + I ut I 1 subject to (21, (3), (5), and (101, 1 Q: I 5 0.5 ( Q :  I 4: > 
l D k . D ~ + ~ l  

Table I1 

Local Demand Smoothing Rules, Multivle Securities 

LS6 

LM1 I Min 1 subject to (1) and (5) ,  each s and t 
IDA.D.MII 

Min I I c,l + I u,I + I ct + u,l] subject to (2), (3), and (5), each t. 
lDb>Db+l l  i!?. 

LM2 1 Min { 1 crl + 1 qOP,,I subject to (21, (5), and (11). 
IDA.D,,HII 

Note: Q = xi?,  qBL. (5) is the boundary price constraint; see [19, fn. 131 for details. 

I Cat = C&r- l  - &Pat, each s and t 

( 1  cat 1 + I qtcP,I 1 subject to (21, (51, and (121, 

cat = 2, c,,I-,/S - $',Psi, each s and t 

LM4 I Min { I ct I + I s 1 1 subject to (2), (3), and 
IDI~.DI .~+I .  ....DskSDs,h+~l 

(5). each t 

Note: (5) is the boundary price constraint; see [19, fn. 131 for 
details. 
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Table I11 

Total Demand Smoothing Rules 
Single Securitv Rules 

TSI  I Min 1 qP 1 subject to ( I )  and (5), each t 
101.. ,DnI 

Min { 1 cr] + I q:PI-l 1 ) subject to (I), (3), and (5), 
TS2 1 ID,,. ,&I 

each t 

TS3 I Min { 1 ell + 1 vrl 1 subject to (2), (3), and (5), each t 
I ID,,. .DnI 

Note: (5) is the boundary price constraint; see [19, fn. 131 for 
details. 

Multiple Security Rule 
I 

B. Total Demand Smoothing 

TM1 

Rules which permit the specialist to select any one of the points Dl through 
D, in Figure 1 will be referred to as total demand smoothing rules. Such rules 
clearly give the specialist more flexibility (never less flexibility) than local demand 
smoothing rules by generally permitting a larger reduction in (absolute) inven- 
tories) for any given beginning inventory level. Table I11 describes a number of 
total demand smoothing rules. In the single security case, rule TS1 in Table I11 
is a generalization of LS3, while rules TS2 and TS3 are extensions of LS4 and 
LS5. Similarly, rule TM1 is a direct extension of rule LM1. 

Min I q:t 1 subject to (1) and (5), each s and t 
10.1.. --.D..l 

111. The Performance of the Simulated Market Maker 

Details of the results of our simulation experiments are presented in Tables IV- 
VIII. In this section, we review the more pertinent aspects of these results, and 
comment on their implications with respect to the potential for programmed 
market making in organized exchanges. 

A. Local Demand Smoothing 

Beginning with the simplest context of unconstrained local demand smoothing 
for a single security, we found that rules LS1 through LS6 are virtually indistin- 
guishable in most dimen~ions. '~ On average, the specialist accounted (except 
under LS1) for 7.7% to 8.0% of all trading; in some trades, however, the specialist 
was the sole seller or sole buyer. This suggests that his or her role in keeping the 
market going was rather significant in the thin markets of our experiments. Note 
also that trading occurred in roughly 39 out of 40 periods (97.5% of the time), 
that is, prices changed less than 20% in 39 periods out of 40. 

"The results for rules LS2 through LS4 are omitted from Table IV since they closely resemble 
those for LS5. LS5 and LS6 are different rules, but they were similar enough to make them 
indistinguishable for the series of random numbers generated in the experiment reported in Table 
IV. 
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Despite a substantial degree of participation in trading, the specialist's average 
absolute holding in the security was 1.28% or less, and did not, exceed 5% except 
under rules LS1 and LS5 (LS6). The specialist's absolute net position was even 
smaller, both on average and a t  the extremes.lg Perhaps the most striking thing 
here is that the differences between LS2 through LS6 are so minor as to be 
negligible. I t  apparently makes little difference whether one minimizes the 
magnitude of the specialist's cash position, share holdings, or combinations of 
the two. 

When limits were placed on the specialist's absolute holdings, all but three of 
the measures, including those measuring net position, were essentially unchanged 
(see Table IV). Not surprisingly, average absolute holdings decreased from 0.91% 
for the unconstrained case to 0.43% when the absolute constraint was 1%. The 
corresponding absolute maximum holdings decreased from 5.63% to 1%. The 
specialist's average participation in executed trades also declined from 7.9% to 
3.5%. Offsetting these declines, however, was an increase in the number of periods 
in which no trading occurred, from 2.4% in the unconstrained case to 5.2% with 
the 3% constraint, 8.8% with the 2% constraint, and 24.4% with the 1% con- 
straint. In sum, then, the results suggest that  the tradeoffs generated by placing 
limits on the specialist's absolute position in a security are such that this type of 
constraint merits serious consideration. 

Placing a 50% limit on the specialist's participation on any trade increased the 
percentage of periods in which no trading occurred from 2.4% to 3.6% (only). 
However, the absolute security holdings of the specialist increased substantially, 
from 0.91% t,o 2.45%, on average, while the maximum increased from 5.6% to 
8.1%, as shown in Table IV. The specialist's net position also ended highly 
unfavorably (-7.1% of the total worth of the security). These results suggest that 
limiting the specialist's degree of participation in each trade has rather unfavor- 
able consequences on inventory and thus lacks promise as an instrumental 
variable. 

When one specialist handles more than one security, there appear to be three 
major items to be noted. First, most statistical measures were virtually the same 
across the four rules that were tested; in fact, the results were essentially 
unchanged from the single security case (Table V). Second, the absolute net 
holdings of securities were only about half of those shown for a single security, 
both on average and a t  the maximum. This is, of course, not unexpected since 
long positions in some securities will be offset by short positions in other 
securities. Finally, the lowest values in both of these categories occurred for rule 
LM4, the only one to fully consider all securities jointly (this rule also led to a 
slightly higher degree of average intervention by the specialist, 10.5%). Somewhat 
surprisingly, the partially joint rule LM3 did worst in terms of the specialist's 
holdings of securities. 

One exception was the case of rule LS1, under which the specialist (inexplicably) made a great 
deal of money (from a starting position of 0, the specialist ended up with 11.49% of aggregate wealth). 
We are inclined to view the financial consequences of rule LS1 as a statistical outlier and to  view 
LS1 as inferior to LS2-LS6 on the basis of its greater degree of intervention (it accounted for nearly 
11% of the average trading and caused the specialist to hold more stock as well in absolute terms). 
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Table IV 

Comearison of Constrained Local Demand Smoothing Rules 

Bounds on Stock 
50% Bound 

on Inventory 
Participation 

3% 2% 1% 
Specialist's Rule LS1 LS5, LS6 LS5a LS5b LS5c LS5d 

No. of investors 
No. of periods 
No. of securities traded 
No. of' shares outstanding 
Initial price 
Minimum price 
Maximum price 
Final price 
Average price change 
% of periods with trading 
% of' shares traded: 

Average 
Maximum 

% participation in trades by 
specialist: 

Average 
Maximum 

Final position of specialist: 
Cash 
Stock 
Net 

Absolute % of stock held by 
specialist: 

Average 
Maximum 
Final 

Net absolute position of 
specialist as % of market: 

Average 
Maximum 
Final 

Next we turn our attention to the relationship between the specialist's role in 
trade execution and the depth of the market. Comparing the first column of 
Table V I  to the first two columns of Table IV, we observe that the specialist's 
role was considerably greater when there were only 20 investors than it was with 
100 investors. As the number of investors was increased from 20 to 50, the 
specialist's average percent of absolute net holdings decreased sharply, as did net 
absolute position as a fraction of the total market and involvement in a given 
trade, while other measures (e.g., average price changes) were essentially un- 
changed. The specialist's average absolute position also declined sharply as the 
number of stocks handled increased from 10 to 50 (see middle columns). Again, 
the joint rule LM4 (see the fifth column in Table VI) did better in terms of the 
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Table V 

Comparison of Multiple Security Local Demand Smoothing Rules 
Suecialist's Rule LM 1 LM2 LM3 LM4 

No. of investors 
No. of periods 
No. of securities traded 
No. of shares outstanding 
Initial prices 
Final prices 
Average price change 
% of periods with trading 
% of shares traded: 

Average 
Maximum 

% participation in trades by 
specialist: 

Average 
Maximum 

Final position of specialist: 
Cash 
Stocks 
Net 

Absolute net % of stocks 
held by specialist: 

Average 
Maximum 
Final 

Net absolute position of 
specialist as % of market: 

Average 
Maximum 
Final 

specialist's holdings than the decentralized rule LM1 (see the second column) 
where there were 10 securities. 

B. Total Demand Smoothing 

A comparison of the results for total demand smoothing rules with those of 
the local demand smoothing rules shows a high similarity not only in fundamen- 
tals (price patterns, average price changes, the proportion of periods with trading, 
and the amount of trading) but also with respect to the specialist's participatiori 
in trading and net position (Table VII). As expected, on average the specialist's 
participation in trading was consistently higher under total demand smoothing 
than under local demand smoothing for the three rules tested. Furthermore, 
there was a noticeable decrease in the specialist's absolute percentage holdings 
of stock for the rules which minimize the magnitude of the stock inventory (LS3, 
TS1). Otherwise, the differences between rules TS1, TS2, and TS3 appear to be 
small. 

As was the case under local demand smoothing, an increase in the number of 
investors or the number of securities that the specialist handles had a favorable 
effect on the performance of total demand smoothing rules. All the measures of 
specialist intervention dropped dramatically as  the number of investors was 
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Table VI 

Comparative Analysis of Local Demand Smoothing Rules 
S~ecialist 's Rule LS3 LM1 L M l  LM1 LM4 

No. of investors 
No. of periods 
No. of securities traded 
No. of shares outstanding 
Initial prices 
Final price(s) 
Average price change 
% of periods with trading 

% of shares traded: 
Average 
Maximum 

% participation in trades 
by specialist: 

Average 
Maximum 

Final position of specialist 
in $ 

Cash 
Stocks 
Net 

Absolute net % of stocks 
held by specialist: 

Average 
Maximum 
Final 

Net absolute position of 
specialist as % of mar- 
ket: 

Average 
Maximum 
Final 

increased from 20 to 100. In addition, as the number of stocks increased from 1 
to 50, the average values of both the "absolute net % of stock value held by the 
specialist," and the "net absolute position of the specialist as a % of the market" 
declined steadily: from 0.56% to 0.10% for the former and from 0.88% to 0.14% 
for the latter. 

The superiority of the total demand smoothing over the local demand smooth- 
ing rules was further documented in a sequence of extensive experiments devoted 
totally to a comparison between these two classes of rules: the specialist's 
inventory as a fraction of the market and the specialist's net position as a fraction 
of the market were both lower. On the other hand, the specialist's participation 
in individual trades was somewhat greater under total demand smoothing.20 The 

AS shown in Table VIII, the specialist's average participation in trades was 12.06% in the case 
of total demand smoothing and 10.58% under local demand smoothing. It is interesting, although 
probably strictly coincidental, that the average annual participation rates of specialists on the New 
York Stock Exchange during the 1977-1981 period ranged from 11.2% to 12.4% (see Wheeler [29, 
P. 121). 
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Table VII 

Comparative Analysis of Total Demand Smoothing 
Specialist's Rule TSl TS1 TM1 TM1 TM1 

No. of investors 
No. of periods 
No. of securities traded 
No. of shares outstanding 
Initial prices 
Final prices 
Average price change 
% of periods with trading 

% of shares traded: 
Average 
Maximum 

% participation in trades 
by specialist: 

Average 
Maximum 

Final position of specialist: 
Cash 
Stocks 
Net 

Absolute net % of stock 
value held by specialist: 

Average 
Maximum 
Final 

Net absolute position of 
specialist as % of market: 

Average 
Maximum 
Final 

data yielded a t  least one statistically significant result (Table VIII): the estimated 
mean difference between the specialist's absolute inventory under local demand 
smoothing and inventory under total demand smoothing is 0.3075%. The stan- 
dard deviation of this variable is 0.076%, or about one fourth of the estimated 
difference. 

IV. The Costs of Demand Smoothing 

The essence of the excess demand function depicted in Figure 1 is its discreteness. 
The role of the specialist (as viewed in this paper) is to intervene by either 
purchasing or selling a sufficient number of shares for the market to "clear." But 
this demand smoothing function is not without its cost, quite apart from the 
purely operational expenses of maintaining the mechanism in question. Consider 
for a moment the local demand smoothing rules we have examined, each of which 
involves a choice of either point Dk or Dk+' on the part of the specialist. 
Interpolating the excess demand curve between Dk and Dk+I, we see in Figure 2 
that it crosses zero a t  price Pd, where Pk > Pd > Pk+l .  But when the specialist 
sells oh+' shares, he or she does so a t  Pk+' < Pd,  not Pd;  as  a buyer, -ijk shares 



Table VIII 

Comparison of Total and Local Demand smooth in^ (TS1 vs. LS3) 

Average 
Price Change 

Per Period 

Avg. 3.67 

Max. 8.46 

Absolute % of Stock Held 
by Specialist 

T S  

Avg. Max. 

0.56 4.74 
0.48 4.89 
0.48 5.27 
0.45 4.92 
0.56 4.03 
0.53 11.28 
0.60 3.84 
0.66 4.22 
0.55 7.58 
0.64 5.02 
0.59 5.95 
0.53 4.87 
0.46 3.48 
0.55 4.07 
0.59 6.33 
0.47 2.84 

0.55 5.20 

0.66 11.28 

LS 

Avg. Max. 

0.84 4.38 
0.77 6.39 
0.92 6.07 
0.82 4.55 
0.68 3.47 
0.80 5.53 
0.82 3.45 
0.91 4.60 
0.87 11.00 
1.00 6.73 
0.90 6.76 
0.99 5.38 
0.77 4.71 
0.91 4.23 
0.90 5.55 
0.78 4.48 

0.86 5.46 

1.00 11.00 

% Participation in Trades by 
Net Absolute Position of 

Specialist as a % of Ending Cash 
Specialist Market Position 

TS LS T S  LS 

Avg. Max. Avg. Max. Avg. Max. Avg. Max. TS LS 

9.29 73.45 8.01 100.00 0.88 5.54 0.33 1.09 -461 -965 
16.67 96.97 13.79 95.35 0.38 1.57 0.66 3.09 879 651 
11.10 85.70 10.59 94.07 1.16 5.96 2.57 15.14 -931 584 
24.57 96.38 20.65 100.00 2.43 9.25 2.87 10.87 -663 -494 
8.80 77.69 7.18 97.74 2.18 8.06 1.20 6.94 -3,721 -3,754 

13.42 100.00 12.48 100.00 4.52 26.16 5.31 30.93 -2,698 -3,074 
6.70 43.43 5.84 41.57 0.85 7.98 2.96 27.86 -2,557 1,898 
7.01 80.75 5.98 83.84 3.41 14.10 2.83 9.91 -8,922 5,021 

16.22 98.93 14.34 99.15 3.13 13.92 4.31 19.70 2,218 2,638 
12.41 87.49 10.72 100.00 1.38 7.36 3.38 16.83 1,857 -6,712 
11.40 79.58 10.76 68.83 2.50 25.66 7.84 65.37 929 4,641 
6.97 61.60 6.00 64.36 0.39 1.73 0.66 2.59 -3,966 -1,767 

10.45 89.84 8.76 63.21 2.40 11.17 1.43 7.68 -2,342 -933 
10.02 59.27 8.67 62.17 0.96 5.28 0.62 2.99 1,791 -1,946 
18.53 100.00 16.26 96.89 0.50 1.83 1.47 6.73 167 -847 
9.41 68.71 9.21 66.28 1.02 7.11 0.94 7.67 -1,499 2,314 

12.06 81.24 10.58 84.59 1.76 9.54 2.46 14.72 -1,245 -172 

24.57 100.00 20.65 100.00 4.52 26.16 7.84 65.37 - - 
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Figure 2. Local Demand Smoothing 

Price 

p k -  

pd - 
pk+l, 

are acquired at  Pk, not Pd < Pk.  Thus, assuming that Pk - Pk+l = l/s (since the 
probability that Pk - Pk+l 2 l/4 is very small when the number of investors is 
large in our model), and considering the specialist's tendency to limit interference 
by picking the smaller of cjk and qk+', we see that the specialist would "lose" 
or less per share bought or sold. In the majority of the simulations, the specialist 
accounted for about 11% of all trading. Thus, the maximum cost to the demand 
smoothing function performed by the specialist per share traded to his or her 
account is approximately 0.11/(0.89 + 1) X '/16 = 0.0036, or lh of a penny per 
share traded by investors! The near-negligibility of this cost is confirmed by our 
simulations: in 56 simulations, the specialist ended with a net gain 26 times and 
with a net loss 30 times, or what we would have predicted if the smoothing cost 
had been near zero. Furthermore, as the number of investors increases, the 
specialist's participation in trading decreases, which in turn reduces overall 
demand smoothing costs even further. 
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V. Concluding Remarks 

0 Excess Demand 

Roughly, our findings may be summarized as follows: 

1. Our simulations confirm that, in the presence of independent stochastic 
increments to (excess) demand, any rule used by the specialist that effec-. 
tively ignores inventory position, such as any rule dedicated to "price 
continuity," will ultimately break down. 

2. Rules which continually minimize the specialist's absolute share holding or 
absolute cash position, or weighted combinations of these, yielded surpris- 
ingly similar effects on inventory patterns. These effects were overwhelm- 
ingly favorable in the sense that the specialist's positions in cash and 
securities remained "small." In this context, rules which only consider the 
sign of the specialist's (quantity of) share holdings, or which limit -the 
specialist's activity in any given trade, performed less favorably. However, 
constraining his or her (absolute) position in securities, while reducing the 
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number of times trading occurs; appears to present alternatives that merit 
serious consideration. 

3. The average percent of total trading in which the specialist is involved 
decreased sharply as the number of investors increased. 

4. The average net absolute holdings of securities and the average absolute net 
worth of the specialist as a fraction of the total market, as well as  the 
variability of these measures, decreased sharply with the number of investors 
and the number of securities handled by the specialist. 

5. Total demand smoothing rules appear to be superior to the local demand 
smoothing rules in terms of their effect on the specialist's absolute inven- 
tories. 

6. The cost of the demand smoothing function due to buying at  a "high" price 
or selling at  a "low" price (but excluding the operational costs) appears to 
be negligible. 

Overall, a number of the programmed demand smoothing rules we examined 
performed well. In particular, the extremely simple rule that calls for the 
(computerized) specialist to minimize new absolute share holdings in each secu- 
rity at  each trading point via total demand smoothing appears to have noteworthy 
merits. This rule has the additional property that it is security-wise fully decen- 
tralized. In conclusion, we are inclined to view the results of our simulation as 
showing rather promising potential for automated market making in organized 
exchanges. 
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