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ABSTRACT OF THE DISSERTATION

Optimal Investment and Consumption Strategies

For a Class of Utility Functions

by

Nils Hemming Hakansson

Doctor of Philosophy in Business Administration
University of California, ILos Angeles, 1966

Professor George W. Brown, Chairman

This research formalizes Irving Fisher's model of the individual
under risk, and represents at the same time a generalization of

Phelps' model of personal saving {(Econometrica, October 1962). The

objective of the individual is postulated to be the maximization of ex-
pected utility from consumption over time where the horizon is arhi-
trarily distant. The individual's resources consist of an initial capi-
tal position (which may be negative) and a non-capital income stream
which is known with certainty but which may possess any time-shape.
The individual faces both financial opportunities (borrowing and lend-

ing) and an arbitrary number of productive investment opportunifies.



The interest rate is presumed to be known and invariant over time;
the case when the borrowing rate exceeds the lending rate is examined
for a specialized model. The returns from:the productive opportuni-
ties are assumed to be random variables, whose probability distri-
butions may differ from period to period. The basic (Fisherian)
characteristic of the approach taken is that the portfolio composition
decision, the financing decision, and the consumption decision are

all analyzed simultaneously in one model. The vehicle of analysis is

discrete-time dynamic programming.
Optimal consumption and investment strategies are derived for the

0 .
- , j-1 :
class of utility functions Z o u(cj), 0 < o<1, where CJ. is the
j=1
amount of consumption in period j, such that u{c} = C’Y, 0<y<l,
=Y

u(c) = -c ', v>0, ul(c) =logc, oru(c) = —e_ﬂ/c, v > 0.

The optimal consumption strategies turn out to be linear and in-
creasing in wealth and in the present value of the non-capital income
stream. In three of the four models studied, the optimal consump-
tion strategies satisfy the properties specified by the consumption

hypatheses of Modigliani and Brumberg and of Friedman precisely.

The optimal lending and borrowing strategies are found to be lin-
ear in wealth. Three of the models always call for borrowing when
the individual is poor while the fourth model always calls for lending

when he is sufficiently rich.

The optimal investment strategies have the surprising property

that the optimal mix of risky (productive) investments in each model



is independent of the individual's wealth, non-capital income stream,
and impatience to consume. It is conjectured that the class of utility
functions examined is the only one for which this property of the op-

timal investment strategies holds.

The preceding result appears to have significant implications with
respect to the theory of the firm. Starting with a collection of hetero-
geneous individuals, each of whom is bent on maximizing (his own)
utility from consumption over time, it is shown that there exists a

basis for the formation of firms by sub-collections of individuals,

where each sub-collection in turn possesses significant heterogeneity.
Each firm so formed is found to have a well-defined (unique) objective
function, which may be interpreted as imputing a precise meaning to
the term ''profit maximization' under risk and with respect to time.
Since the capital structure of the firm is found to be unimportant, an
unexpected tie-in with Proposition I of Modigliani and Miller is

obtained.

xi



CHAPTER I

THE BUILDING BLOCKS

The objectiyve of this research is to derive optimal investment and
consumption strategies for individuals from alternative but fundamen-
tal starting-points, to examine and classify their properties, and to
analyze their economic implications, particularly in respect to the
theory of the firm. The point of view, therefore, is essentially pre~

scriptive, placing the study in the domain of normative decision theory.

In this chapter, the various components of the economic decision
problem to be studied are constructed. The objective of the individual
is postulated to be the maximization of expected utility from consump-
tion over time where the horizon is infinitely distant. The individuals
resources are assumed to consist of an initial capital position {(which
may be negative) and a non-capital income stream which is kno§vn with
certainty but which may possess any time-shape. The individual faces
both financial opportunities {borrowing and lending) and an arbitrary
number of productive investment opportunities. The borrowing rate
may exceed the lending rate, but each interest rate is presumed to be
known and invariant over time. The returns from the productive op-
portunities are assumed to be random variables, whose probability

distributions may differ from period to period.

The components developed in Chapter I are assembled into a formal
model in Chapter 1I, where the main results are derived. The funda-
mental characteristic of the approach taken is that the portfolio com-

position decision, the financing decision, and the consumption



decision are all analyzed simultaneously. The basic modeldeveloped

in this study may therefore be viewed as a formalization of Irving

Fisher's model of the individual, as given in The Theory of Interest,

under risk. At the same time, it represents a generalization of
Phelps' model of personal saving. ! The vehicle of analysis is
discrete-time dynamic programming.

Optimal consumption and investment strategies are derived for the

[o¢]

class of utility functions Zajnlu(cj), 0 < o < 1, where cj is the
j=1

amount of consumption in period j, such that either the risk aversion

index -u''(x)/u'(x) or the risk aversion index -xu''(x)/u'(x) is a posi-

tive constant for all finite x > 0. It is shown that u(x) belongs to this

class if and only if u(x) is strictly concave and satisfies one of the

three "Cauchy' equations u(x + y) = u(x)lu(y) ‘, u{xy)

I

u(x) + u(y),

or u(xy) = u(x)lu(y)f, i.e., ulc) = <Y, 0 < v < 1, u(c) —c_’y,

t

v > 0, u(c) = log ¢, or u(c) = —e7C, v > 0.

Section 2. 6 is devoted to a discussion of the properties of the opti-
mal consumption strategies,which turn out to be linear and increasing

in wealth and in the present value of the non-capital income stream.

! Edmund Phelps, '""The Accumulation of Risky Capital: A Sequential
Utility Analysis," Econometrica, October 1962.




In three of the four models studied, the optimal consumption
strategies satisfy the properties specified by the consumption hypo-
theses of Modigliani and Brumberg and of Friedman precisely. The
effects of changes in impatience and in risk aversion on the optimal
amount to consume are found to coincide with one's expectations.
However, in response to changes in the ''favorableness' of the invest-
ment opportunities, the four models exhibit an exceptionally diverse

pattern with respect to consumption behaviour.

Necessary and sufficient conditions for capital growth are derived
in 2.7. It is found that when the one-period utility function of con-
sumption is logarithmic, the individual will always invest the capital
avallable after the allotment to current consumption so as to maxi-
mize the expected growth rate of capital plus the present value of the

non-capital income stream.

Section 2. 8 discusses the properties of the optimal lending and
borrowing strategies, which are linear in wealth. Three of the
models always call for borrowing when the individual is poor while
the fourth model always calls for lending when he is sufficiently rich.
It appears that a positive rate of interest will always exist in an eco-
nomy composed of individuals obeying one of the four models as long

as the combined wealth is (substantially) positive,

The optimal investment strategies have the surprising property
that the optimal mix of risky (productive) investments in each model
is independent of the individual's wealth, non-capital income stream,
and impatience to consume. It is shown in 2. 9 that the optimal mix

depends in each case only on the probability distributions of the



returns, the interest rate, and the individual's one-period utility
function of consumption. It is then conjectured in 2. 11 that the class
of utility functions examined is the only one for which this property of

the optimal investment strategies holds.

The preceding result appears to have significant implications with
respect to the theory of the firm. Starting with a collection of hetero-
geneous individuals, each of whom is bent on maximizing (his own)
utility from consumption over time, it is shown in 2. 11 that there

exists a basis for the formation of firms by sub-collections of indi-

viduals, where each sub-collection in turn possesses significant
heterogeneity. Each firm so formed is found to have a well-defined
(unique) objective function, which may be interpreted as imputing a
precise meaning to the term ''profit maximization' under risk and
with respect to time. Since the capital structure of the firm is found
to be unimportant, an unexpected tie~-in with Proposition I of

Modigliani and Miller is obtained.

In Chapter III, the results obtained in Chapter II are illustrated by
means of examples, and some of the applications to which the model
lends itself are discussed. It is noted that the model is applicable to
the balanced mutual fund as well as to endowed educational and char-
itable organizations. In the last chapter, the relationship between the
model developed in this study and other investment and consumption

models is examined.

1.1 INVESTMENT VS, CONSUMPTION

Fisher defined consumption as spending for "more or less imme-=

diate enjoyment' and investing as spending of money for "more or



less deferred enjoyment, nl Turning to the more popular authors,
Loeb, for example, writes that ''the purpose of investment is to have
funds available at a later date for spending. "2 In a different passage
he states: '""Any earner who earns more than he can spend is automati-
cally an investor. It doesn't matter in the slightest whether he rea-
lizes that he is investing. "3 While no hard and fast line can be drawn
between what constitutes consumption and what constitutes investment,
consumption is perhaps best viewed as the exchange of present dollars
for immediate or near-immediate pleasures. Inves‘tment, by the
same token, may be looked upon as the expehditure of present dollars

in the hope of receiving (future) dollars at some future time.

We shall now show, by intuitive reasoning with respect to the in-
vestment decision, that no reasonable a priori basis exists for treat-
ing the investment and the consumption decisions of individuals

non-jointly.

1Irving Fisher, The Theorv of Interest, New York, MacMillan, 1930,
reprinted, Augustus Kelley, 1965, p. 114.

2 Gerald Loeb, The Battle for Investment Survival, New York, Simon
and Schuster, revised ed., 1965, p. 129.

3 Ibid., p. 9.

4 By this distinction, the ownership and occupancy of a family home
is clearly both investment and consumption. The down payment,
including the difference between mortgage payments plus expenses
minus the rental value, if positive, constitutes an investment. The
foregone rental income constitutes consumption, The return on the
investment is composed of the rental value less mortgage payments
and expenses, if positive, plus the final proceeds from the sale of
the house.

The consumption of food, for example, might also be called an
investment in that it preserves the health necessary for survival.
However, we shall not take this view here.



The investment decision ~ characterization. The investment

decision, like most problems of decision posed in a realistic way, has
two fundamental characteristics: it is sequential and it is taken under
risk or uncertainty. A sequential decision problem is a problem ex-
tended in time, in which the consequences thus far of decisions taken
in past periods become initial conditions for present decisions. A
decision problem under risk or uncertainty is one in which the model
employed does not assume perfect foresight.

The investment objective. Any normative model presumes the ex-

istence and availability of an objective function. Thus, the derivation
of "optimal'' investment strategies, for example, is contingent upon
the proper and precise specification of the maximand. In the case of
the firm, there is wide disagreement as to what its objective shouldbe,
a disagreement which shows no sign of narrowing. I Even if one were
to adopt the classical postulate of profit maximization, one immedi~-
ately runs into conceptual difficulties: what does it mean to maximize
profits under risk or uncertainty? And even in the case of certainty
one faces the intertemporal question: when do we maximize profits?
Since all claims to the capital of the firm reside in individuals, it
seems reasonable that the objective of the firm should be at least

grounded in the objectives of the individual investors of equity capital.

1 . . . . .
The various objectives suggested in the literature are too numerous

to be discussed here. For a taste of the different proposals, the
reader is referred to Richard Ells, The Meaning of Modern Busi-
ness, New York, Columbia University Press, 1960, pp. 117-21;
Charles Grainger, '""The Hierarchy of Objectives, " Harvard Busi-
ness Review, May-June 1964; and Peter Drucker, '"The Objectives
of a Business, ' The Practice of Management, New York, Harper
& Row, 1954, pp. 62-65, 126-129,




If, therefore, one views the objective of the firm as derived, in some
fashion, from the investment objectives of individuals, the latter be-
come a logical starting-point in an examaination of investment objec-

tives in general.

While the object of investment activity is capital, capital per se
offers nothing to the individual until it is spent. Thus, the value, or
utility, of capital is determined by the enjoyment derived from the
consumption it buys. In the words of Fisher:

Money is of no use to us until it is spent. The ultimate
wages are not paid in terms of money but in the enjoy-
ment it buys. The dividend check becomes income in
the ultimate sense only when we eat the food, wear the
clothes, or ride in the automobile which are bought with
the check. !

Since consumption, therefore, is the ultimate source of all pecu-
niary utility, we are ultimately led, in our search for optimal invest-
ment strategies, to consider individuals' utility functions for alterna-
tive consumption programs. But this is exactly what we would do if
we were interested in determining his optimal consumption strategies.
It is clear at this juncture that the individual's economic choice prob-
lem is two-fold: how much to invest (or alternatively, how much of
one's capital to consume presently), and how to invest that capital
which is not presently consumed (i. e., how to allocate it among
available opportunities). While these two aspects of the problem

have been examined at length separately, a joint investigation of the

problem as a whole, with the exception of Fisher's classic work,

L Op. cit., p. 5



The Theory of Interest, and the writings of Hirshleifer, L still seems

to be lacking. This is the more surprising since, when the problem
is viewed in this light, one is hard put to find an a priori reason for

assuming the two decisions to be independent of one another.

1.2 THE UTILITY FUNCTION

The preferences of the individual, then, which must be translated
into an objective function are his preferences for alternative con-
sumption programs. This is so, as we have seen, because only these
preferences are ultimately relevant for his decisions with respect to

both consumption and investment.

The most significant work to date on the properties of preference
systems concerning alternative consumption programs is that of
Kooprnans,,Z later extended by Koopmans, Diamond, and Willialrnson.3
On the basis of their general significance as well as their important
bearing on this study, Koopmans' findings will be briefly reviewed

here.

1.2.1 Koopmans' Impatience Study

Proceeding from certain basic behavior postulates concerning the
preference ordering of consumption programs which extend over an

infinite future, Koopmans shows in his two papers the existence of

1 .
See in particular Jack Hirshleifer, '""On the Theory of Optimal in-

vestment Decision'', The Jourmnal of Political Economy, August 1958,
and Jack Hirshleifer, ''Investment Decision under Uncertainty:
Choice~Theoretic Approaches', Quarterly Journal of Economics,
November 1965.

2 Tjalling Koopmans, ''Stationary Ordinal Utility and Impatience',
Econometrica, April 1960.

3 Tjalling Koopmans, Peter Diamond, and Richard Williamson,
Stationary Utility and Time Perspective', Econometrica, January-
April, 1964, ’




impatience and time perspective in a broad class of such programs.

The notion of impatience goes back to Bohm-Bawerk, who in The

Positive Theory of Capital advanced the idea of preference for early

timing of satisfaction. In Koopmans' work, impatience is essentially
taken to mean that if in any given period the consumption of the com-
modity bundle x is preferred to that of bundle x', then the consump-
tion in consecutive periods of x, x' is preferred to that of x', x, all
other consumption being the same. The notion of time perspective

will be briefly discussed later.

While formally defined in terms of a utility function, impatience
is viewed as a property of the underlying preference ordering. This
implies that every utility function representing the preference order-
ing must have the impatience property. Consequently, impatience
must be expressed in terms of an ordinal utility function. An ordinal
utility function is a utility function which retains its meaning under a
monotonic increasing transformation, that is, if V is a utility func-

tion, so is U = T(V), where T is any monotonic transformation and

T'(V) > 0.

The postulates assert continuity, sensitivity, and stationarity of
the utility function, absence of intertemporal complementarity, and
the existence of a worst and a best program. Thus, the papers es-
sentially constitute a study of the implications of a continuous and

stationary ordering of infinite consumption programs.

Notation. The bundle of n commodities consumed in period j,

i =1,2, 3. .. is given by



ot
o

c. = (le’ ch, e e e, Cjn)

where Cj > 0. An infinite program will be written

(1-1) 1€ = (C'l’ Cos v v ) = (Cl’ 2c)

while a constant program will be denoted

conS = (c, c,c, « o . )

Statement of the postulates. Pl (Existence and continuity). There

exists a utility function U(lc), which is defined for all 1€ such that,
for all j, Cj is a point of a bounded, convex subset C of the n-
dimensional commodity space. The function U(lc) has the continuity
property that, if U is any of the values assumed by that function, and
if U' and U'' are numbers such that U' < U < U'', then there exists
a positive number 6 such that the utility U(lc‘) of. every program lc‘
having a distance d(,c', ;c) = sup]cj - cj] < 6, where chI - cjl =

1
_ . . ; -
mix lcjk Cjkl’ from some program ,c with utility L(lc) u

1
satisfies U' < U(lc’) < U,

Calling the set {lCEEC“’T(lC) = U}, where lC = CxCx . . . (the
infinite Cartesian product of sets C}, the equivalence class defined by
U, the continuity property given in Pl may be termed uniform conti-
nuity on each equivalence class. In the first paper, Pl stipulated
both uniform continuity on each equivalence class and unboundedness
of C which severely limits the choice of functions U. Evidently
Koopmans chose to sacrifice unboundedness and with it, perhaps,
some realism. The distance function, or metric, also treats all

periods alike, the propriety of which may be questioned. However,

remembering that the presence of impatience is the phenomenon to be



established, this approach certainly provides a neutral starting

point.

P2 (Sensitivity). There exist first-period consumption vectors Cys

c‘1 and a program 5 C from the second period on, such that

1
Y
U(Cl, ZC) > U(Cl$ ZC,’

This postulate is clearly stronger than one which simply requires
that the utility function not be a constant. The object is to keep the
utility function from being insensitive to all program changes which
affect a given period. The choice of the first period for this purpose

is arbifrary.

P3 (Limited non-complementarity). For all Cys c! s 2Co Zc',
1 . . { 1 1
(P3a) U(cl,zc) > U(Cl’ Zc) implies U(Cl’ 5C ) > U(Cl’ € )
Py s . ! ! ;
(P3b) U(Cl, Zc) > U(Cl’ 2C ) implies U(Cl, Zc) > U(Cl’ Zc)

This postulate says that the consumption of‘ a particular bundle of
commodities in one period does not affect preferences with respect to
future alternatives. This, of course, is a highly questionable prcpo-
sition. It would perhaps be more palatable if total expenditures on
consumption were used instead as a measure of satisfaction, but this
idea is rejected by Koopmans. However, here one runs into the rat-

chet principle.

The ratchet principle essentially states that the utility of consump-
tion in a given period is strongly conditioned on the highest level of
consumption previously experienced, particularly if this level is of
recent origin. This point was first made by James Duesenberry in
Income, Saving and the Theory of Consumer Behavior, Cambridge,

Massachusetts, Harvard University Press, 1949, pp. 84-85,114-116.

11



As a consequence of P3, it can readily be shown that U(lc) may

be written

U(je) = Y(u(e), T{,c))

1
where u and T are uniformly continuous on each equivalence class
and Y is continuocus and increasing in u and T.

!

P4 (Stationarity). For some cq and all 2Cs 5C

U( c) > U(,c')

R ;
) > U(cl,zc ) if and only if U(2 > >

‘1r2¢ 2
This postulate asserts that there exists a subset of programs that
differ only from the second period on, the ordering of which is not
changed by advancing the timing of each consumption vector by one
period. It should be pointed out that the ordering in question applies
only to the present. The passage of time is completely outside the
scope of the postulate set — thus, the question of changes in prefer-

ences as a function of time is not considered.
It can be shown that P3b and P4 together imply
U<Cl’ Zc} > Ulz c') if and only if U(Zc) > U(zc‘) for all

“1r C20 2

Since Y(u, T} is increasing in T, P4 is equivalent to

c) > T{

5 > Zc’) if and only if U(Zc) > U(Zc?)

Consequently, there exists a monotonic transformation H such that

T(,c) = H(U(Zc)), H'(U} > 0

2
Thus, letting V(u, U) = Y(u, H(U)), V(u, U) preserves the preference

defined by U(lc) so that we obtain the recurrence relation



(1-2) U(

where V is continuous and increasing in u and U, Clearly, the func-
tion V, which Koopmans calls the aggregator function, may be written

in recursive form:
(1-3) U(

Since u and U are continuous, the range of each is an interval.
The question of whether these intervals include their own endpoints is

settled by the last postulate in favor of inclusion.

P5 (Extreme programs). There exist programs 1< and ,c such that

1

U(lg) < U(lc) < U(lé) for all 1€

By separate monotonic increasing transformations, we may cause
the range of both u and U in (1-2) to coincide with the unit interval
without altering the preference ordering. Clearly, this will also re-

quire a corresponding transformation of V. We then obtain directly

e}
i
(@]
c
—
Ot
-~
1l
—

By monotonicity, this gives
V{0, 0; = 0, V(1,1) =1

Consequently, the domain of V is now the unit square and the range

the (closed) unit interval,

Thus, the ordinal properties of U have permitted us to derive a
(non-unique) one-period utility function u by which all consumption

vectors Cj may be evaluated, j = 1, 2,

13
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Impatience defined. At this point, we are in a position to forma-

lize the definition of impatience. To simplify the notation, we shall
let uj = u(cj), that is, uj is the immediate utility level associated
with < of a program.

u. in the first two

Definition. A program >

c with utility levels u

1 1’

periods and utility level U3 = U(3C) from the third period on is said
to meet the strong impatience condition if V(ul, V(uz, U3)) >

V(uZ, V(ul, U3) ) whenever Uy > u, and the weak impatience condition

if V(ul, V(uz, U3)) > V(uz, 1

V(ul, U3)) whenever u, > U,

What this definition says is that if the first-period consumption vec-

tor ¢, is interchanged with the second-period consumption vector o

aggregate utility is decreased if ¢, is preferred to c,, and conversely.

2)

This definition views impatience as a property of a program , c¢; it may

1

also be said to exist in the point (ul, Uss U3) of the utility space when

the defining conditions hold.

Existence of impatience. On the basis of postulates P1-P5 the

following result is obtained.

Theorem 1. If P1-P5 are satisfied, a program 1€ with first and sec~

such that u. > u, and with

ond period utilities up = u(cl) and u 2) 1 2

Z:u(c

utility U3 = U(,c) from the third period on meets the condition of strong

3

impatience in each of the following three zones:

) < U, < U where U is the solution to Vi(u

1) U(concl < < (uys U} = uy if a
solution exists; otherwise -I:T =1
4 \
2) U(CZ,Cl,CZ,Cl, L) < U3 < U\cl,cz,cl,cz, o)
. . N .
3) U< U3 < U(concz) where U is the solution to V(ul,_{) U, if

a solution exists; otherwise E = 0.



With this result, Koopmans has shown that impatience, which is
usually viewed as a psychological phenomenon, is also a consequence
of quite elementary properties attributed to a utility function in which
the horizon is infinite. This is a significant accomplishment indeed.
A geometric representation of the three impatience zones of Theorem

l in which the scales of u and U have been equated is given in Fig. 1.

Koopmans also shows that when weak (strong) time perspective (to
be discussed below) is present, one can prove that there exists weak
(strong) impatience in the entire (open) interval (uz, ul), which of

course includes zone 2 (see Fig. 1).

Concerning the outlying intervals 0 < U, < U and U<U <1,

3 3

nothing conclusive can be said about impatience in them when they

are non-empty. Bothimpatience and strongpatience may exist, where

strong patience is said to exist in (ul, Uss U3) if
U
=
1
u b
1
v, L
4¢ 2 { | Viu Up) = 0y
U‘2 -
u, L
2
3 /V(ul, U) = u,
UL
0 u, Uy 1 u
1,2,3, - zones of strong impatience

4 - zone of strong (weak) impatience given strong (weak)
time perspective

Figure 1. Zones of Impatience

15



V(u, Viu,, Ug)) < Vi, Viug, U,))

U,
whenever u, > u,.

1 2

Time perspective. Time perspective is defined by Koopmans as

. + -
follows: Let (XI’XZ’X3’ . . . Yand (Yl’ Voo Vg v oo o ) be two consump

tion programs such that Ul U(lx) > UZ = U(ly). Now postpone

each program by one period, inserting consumption vector z in the

vacated first period. Then, by P4 and P3b, U3 = Ul(z, X1y X

2,...)

> U4 = U(z, ViV o oc o ). U will now be said to have the property
of weak time perspective if U3 - U4 < U1 - UZ’ and the property of
strong time perspective it U3 - U4 < Ul - UZ' Since time perspec-

tive is defined in terms of utility differences, it is clearly not an or-
dinal property, i.e., a property of all utility functions representing
the preference ordering. However, time perspective is imputed to
the preference ordering itself when at least one utility function repre-

senting it has that property.

A cardinal utility function. Koopmans suggests that a general dis-

count factor, o(U}, be defined by the identity

OV(u, U)

- (17) = Ll A =i
(1-4) a(U) o1 lu = w (U

that is, as a function of the overall level of satisfaction achieved and
provides as an example a utility function with a discount factor which
decreases in U. (U = W(u), denoted the correspondence function, is
the solution to the equation V{u, U) = U.) It can be shown that (1-4)

is invariant under differentiable monotonic transformations.



It should be observed that if the scales of u and U are equated and

if F'is an increasing transformation, the function F_l

(V(F(u), F(u)))
preserves the form u = V(u, u). Thus, this form is also appropriate
under risk because among the infinite number of ordinal utility func-
tions F(u) there must surely be one, say PA‘(u), which is cardinal, i.e.,

A A A
such that E[ F 1(V(F(u), F(u))) ] correctly reflects the preference

ordering.

An example of a utility function which satisfies postulates Pl

through P5 is given by

(1-5) U(lc) = u(c c) 0 < o <1

which we recognize as the discounted sum of all future one-period

utilities, a form used almost exclusively so far in economic analysis.

Differentiating (1-5) with respect to U we obtain

oV(u, U)
ou

=«
that is, the discount factor given by (l-4) is constant, which agrees
with the conventional interpretation. Thus, it is clear that the utility

function (1-5) implies that impatience exists in all parts of the pro-

gralm space.

It was noted by Koopmans that the addition of a stronger version of
the non-complementarity postulate to the set Pl - P5 leaves this utility
function as the only function which is consistent with the expanded

postulate set. The additional postulate is given by
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1 1 ! '
P3'. For all C1» €y 36 C c C

(3'a) U(Cl, Cy 3c) > U(c'l, CIZ’ 3'c) implies U(Cl, s 3c‘) o

1 1 i
> U(Cl’CZ’ 3C )
! {1 t : 4 f s
(3'b) U(CI’CZ’ 3c) > U"Cl’CZ’ 3C ) implies U(cl, 5 3c)
1 1 1
> U(cl,cz, 3C )

This result can be demonstrated by reference to a study by Debreu,
which gives the conditions under which one can find a monotonic
transformation such that the function U(lc) may be written

1

+ 1 + U

(1-6) U c

Jle,) + U(5e)
Since these conditions are satisfied by Pl - P5 and P3', (1-6) is im-
plied by the enlarged postulate set. However, writing (1-6) as a re-
currence relation, i.e., in the form (1-2), by utilization of the sta-

tionarity postulate P4, we obtain as the only possibility.

(1-5) U(,c) = u(cl) +aU(2c) 0 < a <l

1

w .

= Z a/]"lu(c.)
. J
j=1

Since the form (1-5) is preserved only by a positive linear trans-
formation, Pl - P5 and P3' may be viewed as postulates which define
a cardinal utility function, while the weaker set Pl - P5 defires an

ordinal utility function. Thus, we need not, in the case of {1-5) at

I See Gerard Debreu, '""Topological Methods in Cardinal Utility
Theory, " Mathematical Methods in the Social Sciences, Stanford,
Stanford University Press, 1960, pp. 19-25.




least, concern ourselves with how to find the particular transforma-
tions which give us a cardinal utility function from a given ordinal
one, This step would, of course, always be necessary when the
available consumption programs are subject to risk and only ordinal

utility functions are known.

1.2.2 Properties and Limitations of the Utility Function

In this study, we shall confine our attention to utility functions of
the form (1-5), The most serious drawbacks of this class of func-
tions are undoubtedly the additivity property, which is primarily a
consequence of postulates 3 and 3', and the constancy of the discount
factor a. As suggested earlier, the assumptions of non-complemen-
tarity are particularly limiting when consumption is treated as a
commodity vector. By focusing on total (dollar) consumption alone,
certain types of complementarity between commodities need not be
ruled out. Consequently, we shall choose to be concerned with the
level of consumption rather than the composition of the consumption
basket, Thus, the utility function will be assumed to be defined on
all possible programs (Cl’CZ’C_%’ . . . ) where Cj’ j=1,2, . . .,

is the amount of consumption in period j.

To gain a better understanding of the nature of the limitations in-

herent in utility functions cof the form {1-5), let us examine some con=

crete examples. As a case in point, let us consider the function
u(c) = log c and pose the problem of finding different consumption
programs between which the utility function (1-5) requires the indi-

vidual to be indifferent. For example, we might attempt to find the

1
c and ,c"

consumption programs 1
A

which are equivalent to the

19



constant program ,c = (10,000, 10,000, . . . ) and which are such

1
that consumption increases and decreases,respectively, at the rate

of 5 percent per period. Formally, we obtain from the equation

0
\ 1
Za»] log(10, 000) = Z “og(1. 059" ch)

Za/ log(. 5J_lc'1‘)

which, upon solution, gives the values shown in Table I for different
rates of impatience. In appraising these indifferences, the reader
should remember that their evaluation may be confounded by the as-

sumption of an infinite horizon.

We shall postulate that U(c ) is monotone increasing in

1“2
each of its arguments which is to say that the individual always pre-
fers more consumption to less. It will also be assumed that the indi-
vidual obeys the von Neumann-Morgenstern pos’cula.tesl when con-
fronted with consumption prospects which are subject to risk. Since
in this axiom system expected utility correctly reflects preferences,
the individual will wish to behave, whenever risk is present, so as to

maximize the expected utility obtainable from consumption over time.

Finally, we shall assume that he is a risk a.verter2 with respect to

1 See John von Neumann and Oskar Morgenstern, Theory of Games

and Economic Behavior, Princeton, Princeton University Press,
1947, pp. 26-27 and the Appendix.

2 Let yc' and 1c'' be two possible consumption programs. Then
U(@1c' +(1-0);c¢") > 6U(;c') + (1 -0)U(yc") for all je', jc' such that

U(yc') # U(yc") and 21l 8 such that 0 < § < 1. Thatis, the individual

prefers the certain program 0;c' + (1 ~0);c'"" to the prospect of ob-
taining c¢' with probability § and lc" with probability 1 - 6.

20
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consumption, which implies that U is strictly concave. This assump-
tion, which has a high degree"of acceptance, is crucial to all the re-
sults which follow. But if U is monotone increasing and strictly con-
cave, it follows trivially that U‘(Cj) is likewise.

The utility function (1-5) is defined on infinite programs, which
may seem to be out of step with the fact that man's lifespan is finite.
However, we shall argue that an individual's preferences generally
extend beyond his own lifetime. First, his departure point is indefi-
nite; it therefore behooves him to be conservative in reference to his
planning horizon. Second, he usually wishes to provide in some form
for his heirs and successors - it is in fact this benevolence which
keeps man from perishing from the earth. In the first twenty years
or so, each of us depends on someone else for the economic goods he
enjoys. Consequently, man has, during his lifetime, both the moral
and legal right to supplement his own preferences with regard to con-
sumption with the perceived preferences of his successors - to infinity.

This is not to say that an investigation of finite programs would be
without merit. However, if this approach is used, one is faced withthe
problem of determining just where the horizon is. For the reasons
given, coupled with the fact that a utility function with a distant (but
finite) horizon in which impatience is present is closely approximated

by the same function with the horizon extended to infinity,” the idea

For example, in the case of function (1-5) with o = .9, 99.9 percent
of the utility obtained form a constant consumption level is associ-
ated with the first 64 periods. More generally, if the utility of con-
sumption amount ¢ in a particular period is u, then the contemporary
utility of ¢ 64 periods later is . 001 u.

22
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of evaluating infinite programs appears intuitively much more

satisfactory.

The preference orderings we have discussed have been considered
to arise independently of the opportunities faced by the individual.
This is in agreement with economic tradition, which has always sep-
arated preference from opportunity. Thus, in the ensuing models,
modification of an individual's preferences in the light of experience
is ruled out. An attempt to grapple with the question of allowing for

flexibility of future preference has been made by Koopmans.

1.2.3 Note on the Boundedness of the Utility Function

It has been shown by Arrow {(who credits the discovery of the proof
to Menger) that a von Neumann-Morgenstern utility function is
bounded. 2 Since some of the functions u{c), and hence U, which will
be employed in Chapter II are unbounded, there would appear to be

cause for questioning the results obtained with these functions.

There are two bases on which the validity of using unbounded func-
tions as utility indicators may be defended. First, as long as one
never leaves that part of the domain of the {(unbounded) function for
which its value is finite, the unbounded part of the functicn might as
well be '"cut off. " In the ensuing models, by eliminating the possibility

of starting out in the trapping state (to be discussed in 2.7) in Models

Tjalling Koopmans, '"On Flexibility of Future Preference,' Human
Judgments and Optimality, ed. Maynard Shelley and Glenn Bryan,
New York, John Wiley & Sons, 1964.

2 Kenneth Arrow, Bernoulli Utility Indicators for Distributions Over
Arbitrary Spaces, Technical Report No. 57, Department of Kcono-
mics, Stanford University, July 1958.




II and IIl, the results are indeed the same as they would be if only the
bounded part of the function u(c) had been employed. However, if a
bound were placed on u(c) in Model I, a solution would also exist,
though probably not in closed form, when the convergence condition

(2-29) does not hold.

A second avenue of defense would be to say that the continuity post-
ulate, on which the boundedness of the utility indicator depends, is un-
necessarily restrictive and that it should be modified (which would be

easy enough) to permit the utility function to be unbounded. !

1.3 THE OPPORTUNITY SET

So far, we have endowed the individual with a set of preferences
which falls in the general '""preference class'' represented by the utility
function (1-5). Thus, we have in effect equipped him with the power
to know what he wants. We must now, in order to complete the defini-
tion of his decision problem, specify the opportunities which his envir-

onment presents him.

1.3.1 Opportunities for Decision

We shall grant the individual free will in the sense that he has the
power to make any choice in accordance with his own preferences. We
shall further assume that he functions in a free economy - by this, we
mean that he will not be prevented, by any non-deterministic force,
from including in his choice set any opportunity offered by his

environment.

A critique of the continuity postulate may be found in Duncan Luce
and Howard Raiffa, Games and Decisions, New York, John Wiley,
1957, p. 27.
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To simplify the exposition, we shall postulate that opportunities
for decision occur at equally spaced points in time. Thetime between
two decision points will simply be denoted the (decision) period. Thus,
the individual in our model is left no choice but to decide, at each de-
cision point, how much to set aside for consumption in the period im-
mediately following as well as how to allocate, or reallocate, the re-
mainder of his capital, including any borrowings he may decide upon,

among the available opportunities for investment.

1.3.2 Opportunities for Non-Capital Income

We shall consider individuals who have an opportunity to receive a
salary or other non-capital income such as a pension, alimony, wel-
fare payments, unemployment compensation, or the income from a

trust.

The choice of non-capital income stream, to the extent that a non-
trivial choice exis‘cs,Z undoubtedly depends in part on the individual's
consumption preferences. But there are also other important prefer-
ences, such as the disutility of labor, which enter when a choice

among non-capital income streams is made. We shall give these

l In the deterministic case, it would of course be possible to make all
decisions in advance.

2 We shall say that a non-trivial choice exists only when the selection

of a particular non-capital income stream affects other opportunities
or is dependent on the individual taking a particular action involving
disutility. An income stream which requires no action or an action
involving no disutility and which affects no other opportunities would
always be chosen as a result of the monotonicity of U (trivial choice).
An example of the non-trivial case would be the selection of an in-
come stream from a set of alternative job opportunities where the
selection of any one job precludes the selection of certain other ones.
The second situation is exemplified by the opportunity to choose a
trust income "with no strings attached."
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non-consumption considerations the benefit of the doubt and simply
accept the resultant choice. The non-capital income stream will thus
be viewed as exogenously determined in the model to be presented.
For example, one may rationalize that the individual's choice of non-
capital income stream is primarily governed by what he wants to do
(which may be nothing), the question of remuneration being of sec-

ondary importance.

We shall also make the rather strong assumption that the individ-
ual's non-capital income stream, the installments of which will be

received at the end of each period, is known with certainty.

The building blocks discussed so far are similar to those used by
Phelps, who formulated the basic modeling structure adopted in this
study. 1 However, in the next two sections, we shall extend consid-
erably the opportunity set considered by him. In Phelp's model, all
capital not currently consumed is subject to the same probability
law, which is invariant over time. In the following, we shall intro-
duce the possibility of choice among an arbitrary number of risky
(productive) opportunities, which may be time-dependent, as well

as the opportunity to borrow and lend.

1. 3.3 Productive Investment Opportunities

We shall postulate the existence of a finite number of investment
opportunities, in which, for each, the amount invested may be selec-
ted from an infinite number of possible choices. The basic premise

upon which we shall base our model is that the return promised by

1 Phelps, op. cit.



each opportunity is a random variable. To paraphrase, we are stipu-

lating that the onlythingthat is certainaboutthe returnfrom aninvest-

mentis that is is uncertain. This, of course, is essentially what J. P.

Morgan expressed when, asked what he thought about the stock market,

he replied, "It will fluctuate."

In order to reduce the complexity of the investment situation as much

as possible, while still retaining the stochastic nature of returns, we

shall make the following second-order assumptions:

1.

All investment opportunities are of the point-input, point-output
type, 1i.e., investment and realization take place instantaneously
rather than over time.

All investments are realizable in cash at the end of each period.
The amount invested in an opportunity may be any real number.
This number is non-negative unless a short sale is made.

The return from each investment opportunity is proportional to
the amount invested (constant returns to scale).

There are no nen-proportional conversion costs or taxes. (By 4,
proportional costs or taxes present no difficulties. )

We shall arbitrarily define a shortsale as the opposite ofa longin-
vestment. That is, if the individual sells opportunity i short in the
amount 8, he will receive § immediately (to do withas hepleases) in
return for the obligationto pay the transformed value of 8 at the end
of theperiod. The case in whichthe selleris requiredtomaintaina
depositto covera shortsale and, analogously, the case inwhich he
only needs to putup the maximum amount he may lose in making a
long investment, can also be handled without difficulty in the

ensuing models.
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While these assumed conditions undoubtedly are too restrictive to
be representative of many real-world investment opportunities. they
clearly hold approximately for stocks, bonds, and other liquid invest-

ment vehicles,

In accordance with the preceding. let us denote the transformation
in period j of a unit of capital invested in opportunity i by Bij; that is,
if we invest an amount 6 in i at the beginning of the period, we would
obtain Bije at the end of the period (_BJ.J. is the random variable). We
shall postulate that Bjj is non-negative and bounded from above for
all i and j. What this means. of course, is that when one is in a long
position, one can at most lose one's investment. and that a finite
amount invested will always bring a finite return over a finite time

period. Both of these propositions certainly seem reasonable.

We shall assume that no combination of productive investment
opportunities exists which provides, with probability 1, a return at
least as high as the borrowing rate of interest. (We shall, in the
next section. postulate the existence of positive rates of interest
such that if Ty 1 is the rate at which individuals may save and

rp - 1 the rate at which they may borrow. then r, > r, ) Letting

B="L

i = 1 denote the financial opportunities and i = 2 . . Mj the

productive opportunities available in period j, this implies that the

Bij satisfy the inequality

M.
J

Pr Z(Biqu)e;. <0)>0 all j

i=2 E

for all finite numbers ij > 0 such that eij > 0 for at least one 1.

oy

(o3
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We shall also stipulate that no combination of short sales exists
in which the probability is zero that a loss will exceed the lending
rate of interest. Thus, the Bij also satisfy the inequality

Pr{ ), (By; - rL)Qij < o} > 0 all j

ig Sj

for all finite numbers ij < 0 such that Qij < 0 for at least one i,
where Sj is the set of opportunities which can be sold short in period

j- In addition, we shall assume that the Bij are such that

M.
J
) Bifii - L Bigfyy < 0) > 0 all j
::L:Z kg Sjk
id SJ
M;
for all finite numbers Qij > 0 and all S;"' c Sj such that Z Q*j =
: =2
ié S*
J
E ij, and Qij > 0 for at least one i. The last inequality states
ke S¥
i

that no combination of productive investments made from the proceeds

of any short sale can guarantee against loss,

When Ty =T the three preceding conditions reduce to
M ‘)
Pr (BU - r)@ij <03>0 all j
i=2 |
J

for all finite ij such that Qij > 0 for all i¢ Sj and ij £ 0 for at least
one i. We shall refer to these restrictions on the distributions of the

Bij as the ""no-~easy-money condition'.
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At each decision point, we shall assume that the probability
distributions of return are known for at least the subsequent period.

That is, the distribution functions

Fj(XZ"Xy ¢ ¥ . XMj} = Pr{BZj SXZ, ’83j §x3,, Lo, BMJJ <xMj}
will be assumed to be known at the beginning of the jth period, and

generally earlier. The Fj will also be assumed to be independent.

In real world situations, the individual would of course be forced
to derive his own subjective probability distributions, 1 Numerous
descriptions of how this may be accomplished, on the basis of postu-
lates presupposing certain consistencies in behavior, are available in

. , 3
the literature; see for example the accounts of Savage2 and Marschak.

The realm of risk is generally said to prevail when the probabili-
ties of the possible outcomes in a decision situation are known, while
uncertainty is said to exist when these probabilities are unknown. By
this classification, our problem, as defined so far, clearly falls in
the realm of decision~making under risk. However, the distinction
between the two categories is not as sharp as the preceding definition
might suggest. To show this, let us for a moment consider decision-

making under uncertainty.

Even if he adopts what he considers to be an objective probability
distribution, the very act of adoption makes the distribution
subjective,

Leonard Savage, The Foundations of Statistics, New York, John .

Wiley, 1954, Ch. 3.
Jacob Marschak, '""Decision-making," Working Paper No. 93,
Western Management Science Institute, University of California at
Los Angeles, December 1965, pp. 18-20.




The first observation to be made, as McKean has pointed out, is
that in taking a position on an issue (under uncertainty), an individual

implicity quantifies considerations which he refuses to quantify ex-

plicitly. 1 Going one step further, it follows as a theorem that a
decision-maker who observes a certain measure of consistency in
deciding under uncertainty in fact imputes a probability distribution
over the possible outcomes, regardless of what criterion is used.
This distribution is such that if it is used to solve the decision prob-
lem under risk, it will give the same solution as was obtained under
uncertainty with the given criterion. 2 As a result, if one is commit-
ted to this (highly reasonable) measure of consistency, it would seem
that one might as well convert the decision problem to one under risk

by searching for the necessary probability distribution(s}.

In conclusion, let it be said that probabilities are not something
which only theoreticians consider. To quote a leading investment
banker: '""We are not seeking sure things - we are seeking

probabilities. "3

1.3. 4 Financial Opportunities

As alluded earlier, we shall postulate that the individual may en-
gage in both borrowing and lending operations. The interest rates for

both activities will be assumed to be known with certainty and to be

! Roland McKean, Economics of Defense, Santa Monica, The RAND

Corporation, P-2926, July 1964, p. 12.

see Duncan Luce and Howard Raiffa, Games and Decisions, New
York, John Wiley, 1959, pp. 287-294.

Sidney Homer, Bond Investment Policy for Pension Funds, New
York, Solomon Brothers and Hutzler, 1964, p. 14.

For a detailed exposition of this result and the underlying postulates,
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invariant over time. We shall also stipulate that r_ > r. > 1, where,

B—-"L

as stated earlier, r, - 1 is the lending rate and r, - 1 is the borrow-

L B

ing rate.

While no absolute limit will be placed on the amount an individual
may borrow, it will be assumed that the individual's debt must at all
times be fully secured by his resources. In this connection, it should
be noted that as long as the individual's debt is smaller than the pres-
ent value (on the basis of the borrowing rate) of his (certain) non-
capital income stream at the end of each period, he will always have
the resources to pay back both interest and principal with probability
1l under our assumptions. ! This value, then, would logically seem to

be one of the induced upper limits on borrowing with which we have

reason to be concerned.

Presumably, no rational lender would therefore hesitate to lend up
to the amount of the present value of the non-capital income stream
as long as the debtor always pays his interest and consumes and
invests so as to be able, with probability 1, to do so without extend-
ing his debt beyond this limit.
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CHAPTER II

THE MODEL AND ITS TIMPLICATIONS

In this chapter, we shall combine the building blocks developed in
the previous chapter into a formal model. We shall then seek the solu-
tion to our optimization problem for certain utility functions and

examine the properties and implications of the results obtained.

2.1 SUMMARY OF NOTATION

In order to have the notation developed in the previous chapter in
one place, we shall summarize it, with certain obvious extensions,

below:

c - amount of consumption in period j, where Cj 2 0
(decision variable)

U(cl,cz,c3,...) - the utility function, defined over all possible

consumption programs (Cl’CZ’C3"°°)° The class of

functions to be considered is that of the form

- L) = b C N
(l 5) U(C13C25C3’°°°/ ?l(cif %_ G‘I‘](c23c3) 4" )

[s)
aJ_Lu(cj), 0<q <1

i
Tl

j=1

u(c) is assumed to be monotone increasing, twice
differentiable, and strictly concave for c 2 O,
The objective in each case is to maximize

ElU(c ..)], 1.e., the expected utility derived

1290

from consumption over time
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ij

amount of capital (debt) on hand at decision point j
(the beginning of the jth period) (state variable)
income received from non~-capital sources at the end
of period j, where 0 <= yj < o

the number of investment opportunities available in
period j

the subset of investment opportunities which it is
possible to sell short in period j

amount invested in opportunity i, 1 =1, ..., M,,
at the beginning of the jth period {decision
variable)

borrowing rate of interest

lending rate of interest, where ry z T > 1
transformation of capital invested in opportunity 1
in the jth period, per unit of capital so invested

(random variable). That is, if we invest an amount

8 in 1 at the beginning of the period, we will obtain

Bij@ at the end of that period {constant returns %o

scale}. The joint distribution functiocns Fj of the

B.., 1 =1, ..., Mj’ are assumed to be known for all

Properties of Bij:

1) 0= Bij <o for all i, j

2 8,

r_ when lending

={rB when borrowing
L
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3)

&)

5)

5")

J
Pr{.z (8

r )6., <0} >0
i=2 ]

ij B

all j and all

finite Qi. 2 0 such

that 6., > 0 for at
1]

least one 1

Pr{.z (Bij -8, < 0} > 0 all j and all

igS.
J finite 6,, < 0 such
1]
that 8. . < 0 for at
1]
M least one 1
J
Pr{ .8, - 8, . <0} >0 all j; all
izz (BlJ iy kZ *Bkj ki ‘ j
w
¥ &5 s.€ s, and all
1¢Sj ] ]
finite B.,. =2 O such
1]
. M.
]
that Y 0., =
i=2 *J
é *
i¢S.
J
S .8 . and 8., > 0
kesf K t]
]
for at least one i
When r, =1 =T, the '"'mo-easy-money condition'

3) - 5) reduces to

M

Pr{_zJ(B

A DL PR 0} >0
i=2 J “J

all j, all finite
©.. such that
1]
Qij # 0 for at
least one i and
6.. 2 0 for all i
1]

¢ S,
j



fj(xj) - expected utility obtainable from cdnsumption over
all future time, evaluated at decision point j, when
initial capital is Xj and an optimal strategy is
followed with respect to consumption and investment

Y - present value at decision point j of the non-capital
income stream capitalized at the borrowing rate of

interest, i.e., Yj = Zi + yj+l + yj+2 + ...

r 2 3
B rB rB

By the boundedness of yj, Yj always exists

As stated in 1.3.1, consumption and investment decisions are
assumed to be made at the beginning of each period. By the definition
of Bij’ it is clear that i = 1 denotes the financial opportunities and
that all other values of i denote the productive opportunities,

The amount allocated to consumption is assumed to be spent immedi-
ately or, if spent gradually over the period, to be set aside in a non-
earning account. While no absolute limit will be placed on borrowing,
it is assumed that no debt is forgivable and that the individual's
borrowings must at all times be fully secured. This implies that the
individual's debt cannct exceed the present value, on the basis of the
borrowing rate of interest, of his non-capital income stream at the end
of any period, and that there is an upper limit, given by Xj + Yj’ on
consumption in any period j.

Throughout, the Bij will be assumed to be independently distributed
with respect to j. Except where otherwise indicated, we shall also

assume that r_ = = r,
ssum B r r
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In the initial models, we shall further assume that yj =y, Mj =M,
Sj = S for all j, and that the Bij are identically distributed with
respect to j. The latter assumptions enable us to drop the subscript j
since the decision problem is now the same at each decision point.

Consequently, the employment of the last set of assumptions will be

indicated by the absence of subscript j.

2.2 DERIVATION OF THE BASIC MODEL

As stated in Chapter I, the model to be constructed is probably
closer, in contents, to Fisher's model of the individual, as presented

in The Theory of Interest, than to any other. In form, the model may

. . . . 1
be viewed as a generalization of Phelps' personal savings model.

We shall now identify the relation which determines the amount of
capital (debt) on hand at each decision point in terms of the amount

on hand at the previous decision point. This leads to the difference

equation
M -
2-1 = ] ; 1
(2-1) Xj+1 = .§ Bijzij rzlj + yJ i=1, 2,
i=2
where
M,
J
Yz =X, - ¢C i=1, 2, .

by direct application of the definitions given in 2.1. The first term

of (2-1) represents the proceeds from productive investments, the

lPhelps, op. cit.
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second term the payment of the debt or the proceeds from savings,‘and
the third term the non-capital income received,

In order to eliminate the need for keeping track of the accounting
equation which requires the Zij to sum to xj ~ Cj’ we shall:rewrite

M,
]

(2-1) slightly. To do this, deduct ¥ rz, . from the first term on the
i=2
right~hand side and add it to the second term, Utilizing the fact

M

that ZJZ.. = x, -~ ¢, for all j, we obtain
1=1 *J J 3

M

J
..~t)z,, + r({x.-c,) + v, i =1, 2, ..
i’EZ(BlJ )2y (x5-c) + 1y, 3

(2-2) Xj

This is the (difference) equation, then, which governs the process we
are about to study.

The definition of fj(x) may formally be written

(2-3) fj(xj) = max E[U(cj’cj+l’cj+2’°")~Xj]

1
From (1-5) we cbtain, by the principle of optimality, for all j

- -t
s 3 '

1S ) %

i

gu(cj) + qmaxE[U(c
{

|

24 f.(x,) = max E
(2-4) ](XJ) .

By (2-3), this reduces to

(2-5) £,Gep) = max{ue,) + oB[E, Gy )T} all j

1The principle of optimality states that an optimal strategy has
the property that whatever the initial state and the initial decision
are, the remaining decisions must constitute an optimal strategy with
regard to the state resulting from the first decision, (See
Richard Bellman, Dymanic Progremming, Princeton, Princeton University
Press, 1957, p. 83,




since, at decision point j+l, we are faced with the same kind of
problem as when we are at j except that we now have a new capital

position, x Using (2-2), (2-5) becomes

j+1°
M
(2-6) f.(x.) = max {u(c.) + B[ L, {z (B..-v)z, . +
3 O<e ,<x ., +Y. J 3+l i=2 ] ]
J 1 1]
z, .20
1]
Vigs, r(x.,~c,) + vy, =1, 2,
és (x;-¢) yJ}]} i

In the case when the Bi' are identically distributed with respect to

j and the non-capital income stream is constant, (2-6) reduces to

M
(2-6a) f(x) = max {u(c) + qE[£( T (Bi-wr)zi + r(x-c) + y) 13
O<csx+Y i=2
z{20
Vigs
at each decision point.
For comparison, the model studied by Phelps is given by the
functional eguation
(2-6b) f(x) = max {ufc) + qE[£(B(x-c) + ¥)]}
Ogecsx
In this model, all capital not currently consumed obeys the
transformation B, which is identically distributed in each period,
Since the amount invested, x-c, is determined once ¢ is known,
(2-6b) has only one decision variable (c).
Since x represents capital, fj(x) is clearly the utility of money
at the jth decision point. Instead of being assumed, as is generalily

the case, the utility function of money has in this model been
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induced from inputs which are more primitive than the preferences for
money itself, As (2-6) shows, fj(x) depends on the individual's
preferences with respect to consumption, the available investment
opportunities and their riskiness, the interest rate, and his non-
capital income stream. Are not these the very factors that an
individual, given the task of constructing his utility of money, would
consider? Since money is only a means to an end, it should therefore
come as no surprise that its utility is dependent on the utility of
the end and the opportunities for achieving it.

We shall now attempt to obtain the solution to (2-6) for certain
classes of the function uf{c). Since U is a cardinal utility function,
it should be remembered that xl + XZU(C)> where xl and XZ > 0 are
constants, is also a utility function whenever u(c) is. To keep our
expressions as simpie as posgsible, we shall continue to use the
simple representation u(c) in our analysis,

We shall now state and prove a preliminary result which will be
needed later.
Lemma 1: Let u(c), Bi’ i=2, ..., M, and r be defined as in 2.1 (when
the subscript j is added). Then the function
M
(2-7) h(vz,v3,...,VM) = E[u(.z (Bi - r)vi + )]
i=2
subject to the feasibility constraint
M

(2-8) Pr{ v (Bi - r)vi +r=0} =1
i=2

and the constraint



(2-9) v, > 0 for all i ¢ S

=

has a maximum and the maximizing v, (5 vix) are finite and unique.
Proof: Since u(c) is undefined for c < 0, the purpose of (2-8) is to
insure that the argument of u will be non-negative with probability 1.
Let DF be the {(M-1)-dimensional space defined by the set of points

v E(v ,VM) which satisfy (2-8). Similarly, let Dg be the set

POALTERE
of points v which satisfy (2-9) and define D = DF’WDS. We shall first
prove that h is strictly concave on the set D and that D itself is

non-empty, closed, bounded, and convex.

Differentiating {2-7) twice we obtain

M
ah ] .
(2-10) 55 = E[u (E“ (By-mv, + ) (8;-1)] i=2, ..., M
i i=2
2
3%h v ) 2 .
(2-11) = E[u"'( ¢ B.-v)v, + r){(B.-1v) "] i =2, , M
2 . i i i
avi i=2

Then, since u''(c) < 0 for all ¢ = 0 by the strict concavity of u,

(Bi—r)2 =z 0, and Pr{Bi - r# 0} >0, by the "no-easy-money condition"

(see 2.1), we find that

2%n

V.

1

(2-12) 5 < 0 for all i

whenever v ¢ DF. Thus, h is strictly concave on the set D.

lThe author gratefully acknowledges a debt to Professor Brown for
several valuable suggestions concerning the proof of the closure and
the boundedness of D.
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The non-emptiness of D follows trivially from the observation that

<
i

(0,0,...,0) is a member of D. By the boundedness of the Bi's and
of r (properties 1 and 2 in 2.1), there exists a neighborhood of VO in
relation to D. That is, there is a neighborhood of points v' such that

M
Pr{ ¥ (Bi—r)vi +r=>0}=1
i=2

where Vi =2 0 for all i ¢ 8§

0 + )\v' = \v' where } 2 0 and v' is

Now consider the point Pz e
one of the points in this neighborhood. Let b(v) be the greatest
lower bound on b such that

M
Pr{ £ (B.-r)v, < b} >0
. i i
i=2
By the "mo-easy-money condition'" of 2.1, b(v') =z -r for v' ¢ D,

-0 - - -
b(V) = 0, and b(V) < 0 for all v # VO. Applying the ''mo-easy-money

condition" with respect to the point Vx, we obtain, since we may write

M
Pr{ T (Bi—r)x\—zi <ab} >0
i=2

that 3b(v') = b(Ov'). But when )3b{(v') < -r, or )} > -r/b{(~¥'), the

point Qx cannot lie in D since A > -r/b(v') implies that

M
Pr{ ¥ B.-o)Av! + r =20} <1
. i i
i=2
Thus, xO = -r/b(v') is the greatest lower bound on ) such that Qk ¢ D.
Since xob(Q') = -r, GKO ¢ D and is in fact the point farthest from QO

lying on the line through QO and v' and belonging to D.
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We shall only sketch the remainder of the proof establishing fhe
closure and boundedness of D. Let v # %0 be the limit point of a
sequence of points {Q(n)} ¢ D. Since each point in the sequence belongs
to D, b(Q(n)) 2 -r for all n. It can now be shown, by utilizing the
R M _ -0
fact that .Z (Bi—r)vi is continuous at any v # v , uniformly with

i=2

respect to the Bi's on any bounded set, that lim b(G(n)) < b(v), which
e

implies that v ¢ D. Consequently, D must be closed.

The boundedness of D is established as follows. Let SR be the set
of points v such that |v| = R > 0. Sg is then clearly both closed and
bounded. If£ D' =D r\SR is empty, the boundedness of D follows immed-
iately. Let us therefore assume that D' is non-empty; in this case D'
is also bounded and closed since D is closed and SR is bounded and
closed: If v is a limit point of the sequence {Q(n)} such that
G(n) ¢ D', we must have that v ¢ D' since D' is closed. But b(v) < 0
by the "no-easy-money condition’ (see 2.1) since v # VO by assumption.
Therefore, since we already have that Tim b(g(n>) < b(v), O cannot be a
limit point to the sequence {b(Q(n))}, %(n) ¢ D'. Consequently, b(%)
for v ¢ D' is bounded away from zero, which implies that D must be
bounded.

To prove convexity, let v" and v''" be two points in D. Then, for
any 0 < A < 1,

M
pr{ ¥ (Bi~r)XVi” +3r =0} =1
i=2
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and

M
Pr{ © (8- (1-)v" + (1-M)r 2 0} =1
i=2 )
which implies
M
Pr{ ¥ (B.-r) O\ + (1-)v'") + r =0} =1
. i i i
1=2
so that xv'" + (1-))v‘'" ¢ D. Thus, D is convex.

Since our problem has now been shown to be one of maximizing a
strictly concave function over a non-empty, closed, bounded, convex set,
it follows from the Kuhn-Tucker Theorem that the function h has a

%
maximum and that the v, are finite and unique.

A number of corollaries follow from this lemma which we shall also

find useful later.

Corollary 1. TLet u(c), Bys i=2, ..., M, and r be defined as in

Lemma 1. Moreover, let u{c) be such that it has no lower bound. Then
ks M e
the A which maximize (2-7) are such that Pr{ v (Bi-r)vi +r >0} =1.
i=2

The proof is immediate from the observation that h — -* as the greatest

M

lower bound on b such that Pr{ ¥ (Bi—r)vi + r < b} > 0 approaches 0
i=2

from above.

Corollary 2. TLet u{c), 8., 1 =2, ..., M and r be defined as in

1

Lemma 1. Then the magimum of the function (2-7) subject to the con-

straints (2-8) and (2-9) is greater than or equal to u(r).

1
H. W. Kuhn and A. W. Tucker, '"Nonlinear Programming,' Second

Berkeley Symposium on Mathematical Statistics and Probability, Berkeley,
University of California Press, 1951, pp. 481-486.
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Proof: When v, = 0 for all i, we obtain by (2-7) h = u(r). Unless
some other feasible v, can make h > u(r), vz = 0 since the zero solution
is always feasible.

Corollary 3. Let u(c), Bi’ i=2, ..., M, and r be defined as in

Lemma 1. Moreover, let u(c) be such that u(c) < b. Then the ] which
satisfy (2-8) and (2-9) are such that
M
max Efu( ¥ (B.-r)v, + t)] < b
. i i
i=2
The proof is immediate from Lemma 1.

Corollary 4. Let u(c), Bi’ i=2, ..., M, and r be defined as in

Lemma 1. Moreover, let u{c) be such that it has no lower bound, let §
be such that all i ¢ S, and let the Bi be independently distributed.

*
Then the v, which maximize (2-7) subject to (2-8) (and (2-9)) are such

that

o,

"<
(2-13) vy

AV

0 if and only if E[.] 2 i=2, ..., M

Proof: Since the Bi are statistically independent, the partial

derivative (2-10), evaluated at v, = 0, may be written

3h (o oy = E[u'( 3 .
avi V.= = E[u kEZ(Bk-r)vk )] [Bi-r]
k#1
But
3h

- 2 >
avi(vi—O) = 0 as E[Bi] sr

since the first factor is positive from the monotonicity of u, By
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(2-12), this proves the first part of (2-13) since the assumptionsvwith
respect to u{c) and S insure an interior maximum with respect to (2-8)

(see Corollary 1), and (2-9) is non-existent. Again by (2-12), if

> ah = 3h .o > o >
v, 2 0 when SV, z 0, then avi(vi 0) = 0, giving E[Bi] Sr
Lemma 2. TLet u(¢), B., L1 =2, ..., M, and ¢ be defined as in 2.1

1

except that u(c) has an upper bound and is defined for ¢ < 0. Moreover,

let rl > 0 be a constant. Then the function

(2-14) ‘r_‘._(vz,...,vM) = E[u( z (8, - DV, + 1]

*
where vi > 0 for all 1 ¢ S has a maximum and the maximizing Vi(E Vi)
are finite and unique.

The proof is similar to that of Lemma 1. Corollaries 2-4 also

hold with (2-7) replaced by (2-14).

2.3 THE SOLUTION WHEN u(xy) = u(x)lu(yll
We shall first consider the class of utility functions u(c) such

that u(xy) = u{x)|u(y)|. This class consists of the functions

lThe set of solutions to the functional equation u(xy) = u(x)u(y)
is given by (See J. Acz&l and S. Golass, Funktionalgleichungen der
Theorie der Cecometrischen Objekte, Warsaw, Panstwowe Wydawnictwo
Naukowe, 1960, pp. 102-103.)

(A) ux) =0
(B) u(x) = |x|Y
(C) u(x) = sg x%

(D) u(x) = |x|¥sg x (y # 0)

where v is a constant. However, under our restrictions (u{x) monotone
increasing and strictly concave, x = 0), but including the possibility
that u(xy) = u(x)[u(y)], the set (A)-(D) reduces to {(2-15) and (2-16).



(2-15) ul(c) = Y 0<y<1
and
(2-16) u(c) = -c ! y >0

As in the following, we shall employ the method of successive approxi-
mations in seeking the solution to (2-6a). Let the Nth approximation

of f(x) and the optimal strategies c(x) and zi(x)5 i=1, ..., M; be

(N)

denoted fN(x), cN(x), and zg (%), respectively, and define

g =x+ i+ He

N r N-1
r r
We then obtain
" )

(2-17) fN(x) =  max %u(cN) + &E[fN—l{ N (Bi—r)z.l + r(x—cN) + v}

O<c <t i=2

NN
ng)ZO
i

Vids

where fl(x) = u(x).

Solving successively, we get

f(x) = max {g{c } + oE[£,( g (B.—r)z(z) + r(x-c,) + y)T}
2 O<c <t 2 -7 1 jo9 L i 2 -
2 72
zgz)ZO
i

Viés

M
T (Bi-r>z(2) + r(x-c,) + y)]}
=2

= max {u(cz) + aEfu( i

1
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M z(z)
- max{u(e,) + ey ep BleC B (gt 0]

By Lemma 1, the function
M
(2-18) h(vz, ceey VM) = E[u('z (Bi-r)vi + r)]
i=2
subject to (2-8) and (2-9) has a unique maximum for finite Vi

*
i=2, ..., M. Denoting the maximizing values by v and the maximum

of (2-18) by k, we note that the set of values

2P () = (t, - c,)v, i= 2, ..., M
(2-19)
M
ziz)(x) =% - ¢ 5 ziz)(x)
i=2

maximizes h for all values of x and c2. Since

df
(2-20) 2 _ _
Sh a\u(tz C2>| > 0
we clearly wish to make h as large as possible. Thus, the investment

strategy given by (2-19) is optimal.

Differentiating with respect to ¢

to 2(2)
1

’ (after maximizing with respect

for all i), we obtain, since u(t2 - cz)@\k} = \u(t2 - cz)\qk

by (2-15) and (2-16),

°T

BCZ

(2-21) = u'(cz) - Q)k[u'(tz - 02)
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By the monotonicity and strict concavity of u(c), u'(c) is monotone

decreasing; it therefore has an inverse. Denote the inverse of

u' by g, where y is the positive constant in (2-15) or (2-16), i.e.,

< |+~

(2-22) g(% u'(e)) = ¢

It then follows that g is positive and decomposable in the same way as
(2-15), i.e., g(xy) = g(x)g(y). Upon setting the partial derivative

(2-21) equal to zero, we obtain

(2-23) ¢, - g(a\k\)(tz-cz) = 0

so that
_ - (alkl)
(2-24) CZ(X) ¥ ala kl) t2
where cz(x) clearly lies in the interval [O, t2]. The maximum

condition follows from the concavity of £, in <, {to be shown later).

2

1l

(2-25) fZ(X)

fZ(X) now becomes
(k) ' alk])
Hl + elalk J we aiklu[?z EEEICI tz}

| glalk|) l
L+ g(a[k\)‘

il

u(tz) u

—
—N
o
P
|
—
Kl
~
S———
Q
~
|

T s ] el
ulty) U g(ockk\)l b ey

l 1

it

-y

1l

Kzu(tz) (K2 constant)



since " [u(g(afk|

Continuing

i}

(2-26) £.(x)

N = alklela|k]) from I/’ (glalk)) = a|k]|

in this fashion, we obtain, for N = 2, 3, ...

N-1
a(ty) u[ gl(alkl)™ 7

1+yau>+amWDﬁ+.u+guﬂkW*J‘

(2-27) CN(X)
ZiN)(X>

(2-28)

28 ()

PRI .
1+ g(aikl) + ...+ g[(q‘k\)N_l] N
= (ty cN)v i= 2, , M
M
=% - ¢y s ng)(x)
i=2

Denoting lim fN(x) by f(x), we find that f(x) exists whenever
N

(2-29)  glalk|) > max {1, |uw(1)|}

It is then given

(2-30)  £(x)

u

K

where t = 1lim ¢t

Now N

by

Je@lkD -1 stalk)
(£) [mﬂﬂ>}hmwbﬂwnﬂ
u(t) (K constant)

.
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Furthermore cN(x) and ng)(x), i=1, ..., M, converge to

(2-31)  e(x) = (1 - glalk) 1t

(t - C)V; i=2, ..., M

Zi(X)

(2-32)
M
zl(x) =X -c - 3 zi(x)
i=2

We must now show that the solution is unique. Since the sum of

two strictly concave functions is strictly concave, max {u(cz) +

)

a\k\u(tz—cz)} is strictly concave for 0 < ¢, £ t and therefore for

2 2°
0 < <y < x + y/r, by the strict concavity of u(c).l Therefore, by
(2-21), fz(x) is strictly concave for x 2 -y/r. As a result, CZ(X) is

unique. By (2-19), ZEZ)(X), i=1, ..., M, is then also unique. By

induction, we obtain that each function in the sequence {fN(x)} is

strictly concave and that the sequences {CN(X)}, {ziN)(x)},

i=1, ..., M, are unique. Thus, the limit function f(x) is strictly

concave. From this it follows that the optimal strategies are unique,
The preceding now establishes

Theorem 2. Let q, u(c), B> i=2, ..., M, r, y, and £(x) be defined

as in 2.1. Moreover, let u{c) be such that u(xy) = u(x)!u(y)| and

lThe proof of the theorem which states that if G(x,y) is a
strictly concave function of x and y for x,y =2 0, then the function
H(x) defined by H(x) = max G(x,y) is strictly concave in x for

O<sy<x
x 2 0 may be found in Richard Bellman, op. cit., p. 21.



let the function g be the inverse of (1/\)u'(c), where ) is the

constant in (2-15) or (2-16). Then a solution to (2-6a) exists for

% 2 -Y whenever g(a'k|) > max {1, |u(l)\} and is given by (2-30)-(2-32),
where k is the maximum of (2-18) (subject to (2-8) and (2-9)) and

the Vi are the values of v, which give the maximum. Furthermore, the
optimal strategies (2-31) and (2-32) are unique.

When y = 0, the sclution to (2-6a) reduces to

f(x) = Ku(x)
e(x) = [ 1 - gl "Ix
z (x) = (x—c)v% i=2, ..., M
i i
M
Zl(X) =X ~-Cc - 3 zi(x)
i=2

But then, letting t = x + Y as before,

£(t) = Ku(t)
] -1
c(t) = [ 1 - glalk|) It
2, (t) = (t-c)vi i=2, ..., M
M
zl(t) =t -c¢c- T zi(t)
i=2

As a result, except for zl(x + Y), the solution to the original
problem is not altered when the individual, instead of receiving the
non-capital income stream in installments, is given its present value Y

in advance. Thus, instead of letting x be the state variable when



there is a non-capital income, one could let x + Y be the state
variable (pretending there is no income), as long as Y is deducted

from zl(x + Y).

2.3.1 Model I
As was indicated earlier, one of the two possible functions which

satisfy the decomposability requirement of Theorem 2 is

(2-15) wu(c) = cx O<hx<l

We shall refer to the decision problem (2-6) when u(c) is of this form
as Model I. The chief characteristic of (2-15) with which we shall be

concerned is that u(c) has a lower bound but no upper bound.

1

When (2-15) holds, u'(c) = ch—l so that g(x) = xl—x. Thus the

-1
L-)

convergence condition (2-29) becomes (a\k\)

Corollary 2, k = rx, so that gk > 0 and f(x) is finite only for

> 1, or a|k| < 1. By

a < l/rx < 1. Thus, when gk < 1, the solution to Model I for x = -Y
is, by Theorem 2,
[ . 1-)\
-\
(2-33) f(x)=| L&) (x + V)

o

=

(ak) " M-1]

1
(2-34) c(x) = [l - (ak)l_x](x + Y)
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L.

W
(x+ Y - c)vi i=2, ..., M

23 (%)

(2-35)

zl(x) X - c - 7 zi(x)

1=2

where k and the vz are given by

(2-36) k (5.-r)vf + r}ﬁJ
L i

N

F M
112,

}K

2(B.‘—r)vi + r ]

{

= max E

™M=

i
subject to (2-8) and (2-9).

2.3.2 Model 11
Let us now examine the second class of functions u for which

Theorem 2 holds, namely
(2-16) u(c) = -c¢ A > 0
Here, u(c) has an upper bound but no lower bound. Since u'(c) =

-1
-1 ]
e M g0 = %
-1
(a\k))X+l > 1, or g|k| < 1. By Corollary 2, k = -t

A

so that the convergence condition (2-29) becomes

M. and by

Corollary 3, k < 0; thus !k\ < v M < 1 so that the convergence

condition always holds.

By Theorem 2, the solution to Model 11 is then, for x = -Y
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- PERERS:!
1
(2-37) £ = |G s T
« |
| a-)M )
r L1
(2-38) c(x) = |1 - (a(- Sy J<x+ Y)
zi(x) = (x + Y - c)vj i=2, ..., M
(2-39)
M
z (x) =x - ¢ - ¥ z,(x)
1 i=2 *

where k and v

are given by

i

]f_ M * - }\—
(2-40) k = E;—( Y (B.-v)v, + 1)

Lod=2 -t -

Il

subject to (2-8)

2.4 THE SOLUTION WHEN u(xy)

r M
max E & ( Z (B. —r)vl + r)

=2

and (2-9).

= u(x) + u(y)

We shall now

decomposable in such a way that u(xy) = u(x) + uly).

function satisfies this property, namely u(c) =

consider the class of utility functions which is
Since only one

log ¢, we shall

therefore replace u(c) with log ¢ in (2-6) whenever this class is

considered.1 It

1
See J. Acz€l,
Anwendungen, Stuttgart,

should be noted that this class of utility functions

Vorlesungen uber Funktionalgleichungen und Thre
Birkhauser Verlag, 1961, p. 48.
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has neither an upper nor a lower bound. The solution is now given by

It

Theorem 3. Let «, Bi’ i 2, «.., M, r, v, and f(x) be defined as in

log ¢. Then a solution to (2-6a) exists

2.1. Moreover, let u(c)

for x 2 -Y and is given by

1 1 a log q ak
(2-41) f£(x) = — log(x +Y¥) + — log(l-a) + +
ho to (10 (L)’
(2-42) c(x) = (1 - ){x +Y)
zi(x) =(x+Y - c)v? i=2, ..., M
(2-43)
M
zl(x) =X =-cCc- % zi(x)
i=2

kS
where k and v, are given by

1

M e
(2-44) &k E[log( s (Bi—r)v; + r{]

i=2

1]

T M

max E| log{ ¥ (B.-r)v, + rﬁ

. i i
L i=2

subject to (2-8) and (2-9). Furthermore, the optimal strategies

(2-42) and (2-43) are unique.

Proof: Let us verify that the solution satisfies (2-6a) by denoting

the right-hand side T(x) upon inserting (2-41) for f(x). Then

r M
|
T(x) = max {log c + T%— Etlog( b (Bi-r)zi
O<csx+Y & i=2
ziZO

Vigs
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+ r(x-c) +y + E%T%

2 1, 2y
+ 2 log(l-q) + & £, G

1-¢

{
max ilog c + I%— log(x+Y-c)
O<cEx+Y o

ziZO

¥iéS

M Z.
o [ N
T ELlog{iEZ(Bi ) bre r}:]}

2 lo zk
+ L log(l-q) + —2BC , &

(1-0)%  (1-?

1- 2 2
* (1-0) (1-0)
By (2-7), the third term can be written

SRR 2 “M 1

1-q L§+Y—c >orre x+Y-cJ

where %% > 0. Since the maximum of h is k by (2-44) and strategy

(2-43) assures this value regardless of the values of x and of c,

(2-43) is clearly the maximizing strategy. The third term then

ak .

becomes 1o Solving
oT _ 1 _ Q. -0
3¢ ¢ (l-g)(x+tY-c)

for ¢ we obtain (2-42). Thus,



&

T(x) Toa

log(l-q) + log{x+Y) + I%E log ¢ + log (%4+Y)

19

|

—+

2 2
k lo k
1- + —l%& log(l-q) + & gzd' + 2 5
¢ (1-a1) (1-00)

I%— log (x + Y) + T%_ log(l-a) + & log @ + gk 5
« - (1-w® (-

£(x)

The uniqueness of the solution follows immediately from the strict

concavity of f(x).

2.5 THE SOLUTION WHEN u(x + y) = u(x)|u(y)]

We shall now examine the case when u(x + y) = u(x)|u(y)|. The
only utility functions, by the criteria of 2.1, which satisfy this

functional equation are those given by1
(2-45) u(c) = oY y >0

Since -1 < u(c) £ 0, this class provides an example of a utility
function with both an upper and a lower bound. The solution to (2-6a)

is now given by

Theorem 4. Let ¢, 8., i 2, ..., M, r, vy, and f(x) be defined as in

3

11

2.1. Moreover, let u(c) —eYE for ¢ 2 0 where y > 0. Then the

solution to (2-6a) exists for x = -Y+[r/(y(r—l)%]1og(—qkr) and is

given by
o y{r-1) (x + Y)
(2-46) £(x) = - == (-gkr)T te T

lThe solution to the functional equation u(x+ty) = u(x)]u(y)] is

u(x) = eYX, u{x) = —eYX, u(x) = 0 (see J. Aczél, Vorlesungen . . .,

pp. 47-48). Of these, only the subset given by {(2-45) is strictly
concave and monotone increasing.



r-1 1
(2-47) c(x) = —?—(x + ¥Y) - T (D) log(-akr)
zi(x) = 0P v i= 2, , M
(2-48)
M
zl(x) =x - c - 'Z zi(x)
i=2
%
where k and v, are given by
M *
Ezz(ai_r)vi
(2-49) k = E[-e ]
M
== (B170)Y;
= max El:—el—2 1
v.20
i
Vigs

provided that
%
(2-50) log(-gkr) + b{v ) 2 0
-
where b{wv ) 1s the greatest lower bound on b such that

M .
Pr{ v (Bi - r)vf < b} >0
i=2 1

- * Je
and v = (v ,..Q,VM). Morecover, the optimal strategies {2-47) and
(2-48) are unique.
Proof: To obtain this solution, it is necessary to proceed in two

steps. First, consider (2-62) with the non-negativity restriction on

¢ removed. The new equation is stili well defined wathematically



since the function (2-45) is defined for all c. We have simply removed
the economic content of u(c), and hence (2-6a). However, if, upon
solving the new equation, we can find an interval of x such that, once
entered, c¢(x) will remain non-negative with probability 1, the economic
content may be reimputed to the solution for that interval. Thus,
the second step is to find the conditions, if any, which guarantee the
non-negativity of c(x).
Step 1: By a proof similar to that of Theorem 3, it can be shown that
the solution to (2-6a), under the assumptions of Theorem 4 but with the
restriction on ¢ removed, exists for all x and is given by (2-46)-
(2-49), the optimal strategies (2-47) and (2-48) being unique.
Step 2: Upon examination of (2-47), it is readily seen that c(x) 2 O
whenever
(2-51) x 2 -Y + —~—£——§ log(-gkr)

v(r-1)
since ¢ is strictly increasing in x. By (2-2), it follows that the
greatest lower bound on the capital position at the beginning of the

next period is
(2-52) b(z) + r(x-c) + vy

Deducting the current capital x, the minimum increase in each period

becomes

(2-53) Ty [b(¥) + Log(-akr)]

y(r-
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once the optimal strategies {2-47) and (2-48) are inserted in (2-52).
Whenever (2-53) is non-negative, it follows that the probability of a
capital decrease is 0. Since {2-53) is independent of x, and in fact
a constant, we obtain that capital will never decrease, regardless of
the value of x, when (2-53) holds. Since r/(y(r-1)) > 0, c(x) 20
whenever (2-51) and (2-50) hold. When (2-50) holds, we also find that
the right-hand side of ({2-51) is greater than or equal to -Y, which
gives the theorem.

Since the second term in (2-50) is always non-positive, it follows
that it is necessary, but not sufficient, for (2-50) to hold that
-akr 2 1. (By Lemma 2 and Corollaries 2 and 3, -1 < k < 0; thus, it

is also necessary, but not sufficient, that g = 1/r.)

2.6 PROPERTIES OF THE OPTIMAL CONSUMPTION STRATEGIES

In each of the four models we note that the optimal consumption
function c(x) is linear increasing in capital % and in non-capital
income y. Whenever y > 0, positive consumption is called for even
when the individual's net worth is negative, as long as 1t is greater
than -Y in Models I-II1 and greater than -Y + [r/(y{r—l)z)jlogégkr) in
Model IV. Only at these end poinis would the individual consume
nothing.

The optimal consumption strategies have an interesting relation

to the consumption hypotheses of Modigliani and Brumberg1 and of

lF. Modigliani and &. Brumberg, "Utility Analysis and the
Consumption Function: An Interpretation of Cross-Section Data,
Post-Keynesian Economics {ed. K. Kurihara), New Brunswick, Rutgers
University Press, 1954.
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Friedman,l which form an important part of the so-called new consump-
tion theories.2 One of the hypotheses, usually referred to as the
normal income hypothesis or as the permanent income hypothesis,
essentially states that an individual's consumption in any period
depends only on his normal (permanent) income. Normal income is usually
taken to include the current value of the individual's net assets plus
the present value of his future non-capital income stream. The

second hypothesis, named the proportionality hypothesis, states that
"for any individual, the velationship between his consumption and his
normal (permanent) income 1s one of proportionality.”3 Both of these
hypotheses have been at least partially confirmed by extensive
empirical tests carried out by their sponsors.

Surprisingly, the optimal consumption strategies of Models I-III
satisfy the properties specified by the ftwo consumption hypotheses
precisely, Thus, individuals who maximize expected utility from
consumption over time in a risky environment and whose preferences
are of the class defined by Models 1-II1 exhibit the same kind of
behaviour with respect fo consumption that characterizes a great many
people in the real world. While this significant meeting-point between
descriptive and normative consumption theory has a number of interest-
ing aspects, the most significant observation from the point of view
of this study is that the class of utility functions (1-5) such that

u(c) = CY, 0 <y <1, u(cy = —c_y, v > 0, or u(c) = log c may

lMilton Friedman, A Theory of the Consumption Function, Princeton,
Princeton University Press, 1957,

2M. J. Farrell, "The New Theories of the Consumption Function,”
Economic Journal, December 1959,

*Ibid., p. 68L.
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represent a valid approximation of the preferences of a large group of

individuals,

2.6.1 Effect of Impatience Rate

We shall now examine the effect of impatience on the optimal con-
sumption strategies. Since the functions (2-34), (2-38), (2-42), and
(2-47) are all decreasing in ¢, we find in each case that the greater
the individual's impatience l-g is, the greater his present consumption

would be. This, of course, is what we would expect.

2.6.2 Effect of Risk Aversion Index

Pratt proposes as a measure of the risk aversion possessed by a

s s .1
utility indicator u{c) the function

(2-56)  g(c) = St

In Model IV, we find that qfc) = v; since c(x) is seen to be increasing
in v, the greater the risk aversion of u(c), the greater the amount of
present consumption. It should be noted that (2-45) is the only
strictly concave functiom2 and hence the only utility function, for
which the risk aversion index (2-54) i1s comnstant for all c.

Pratt also defines a second function
+* N
g (c) = cq(e)

which he calls the proportional risk aversion index.1 By this measure

John Pratt, "Risk-Aversion in the Small and in the Large,"
Econometrica, January-April 1964, p. 122.

1pid., p. 130.
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we obtain

(2-55) q (<)

= l—Y
(2-56) q (c) = v+l
(2-57) ' (e) = 1

for Models I, 1T, and 111, respectively. By reference to (2-34) and
(2-38), we find that c(x) is increasing in q*(c). Again, the one-
period utility functions of Models I~III are the only ones for which
q*(c) is constantql Thus, the more risk aversive the individual's
consumption preferences are, the more he will favor the present at the
expense of the future. Note that the preceding statements say nothing

about his investment behavior but refer only to his optimal consumption

pattern.

2.6.3 Effect of the "Favorableness' of the Investment Opportunities

From (2-36), (2-40), (2-44), and (2-49) we observe that k is a
natural measure of the "favorableness" of the investment opportunities.
This is because k is a maximum function determined by (the one-period
utility function and) the distribution function F; moreover, F is
reflected in the solution only through k, and f(x) is increasing in k.
Let us examine the effect of k on the marginal propensitiez to consume
out of capital, »dc/3x, and out of non-capital income, 3c/3y, where
ac/ay = [1/(r-1)1dc/ax. (By the linearity of the consumption function

mentioned earlier, these propensities are constant over all feasible

“bid., p. 134,
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x and y.) From (2-34), we find that the propensity to consume is
decreagsing in k in the case of Model I. This phenomenon can at least
in part be attributed to the fact that the utility function is bounded
from below but not from above; the loss from postponement of current
consumption is small compared to the gain from the much higher rate

of consumption thereby made possible later. 1In Model IT, where the
utility function has an upper bound but no lower bound, the opposite

is true. Here, the optimal amount of present consumption is increasing
in k, which seems much mere plausible from an intuitive standpoint,

In Model I11, we observe from (2-42) the curious phenomenon that
the optimal consumption strategy is independent of the investment
opportunities in every respect. While the marginal propensity to
consume is independent of k in Model IV also, the level of consumption
is in this case an increasing function of k as is apparent from (2-47).
We recall that the utility function in Model II1 is unbounded while
that in Model IV is bounded both from below and from above. Thus, the
class of utility functions we have examined implies an exceptionally
rich pattern of consumption behaviour with respect to the '"favorable-

ness'" of the investment opportunities.

2.7 THE BEHAVIOUR OF CAPITAL

We shall now examine the behaviour of capital implied by the
optimal investment and consumption strategies of the different models.

According to one school, capital growth is said to exist whenever

(2-58) E[x ]>xj =1, 2, ...

j*+l



. . ' : . N 1
that is, capital growth is defined as expected growth. We shall
reject this measure since Xj may under this definition, as j — o,

approach a value less than x, with a probability which tends to 1. We

1
shall instead define growth as asymptotic growth, that is, capital
growth is said to exist if
(2-59) lim Pri{x, > x.} =1

e
When the > sign is replaced by the = sign, we shall say that we have
capital non-decline. 1If there is statistical independence with
respect to j, (2-58) is implied by (2-59) but the converse does not
hold, as noted.

Model IV will be considered first. ¥From (2-50) it is clear that
non-decline of capital is always implied (in fact, the solution to the
problem is contingent upon the condition that capital does not decrease,
as pointed out earlier). It is readily seen that a sufficient, but
not necessary, condition for growth is that there is a non-zero
investment in at least one of the risky investment opportunities since
in that case, by (2-50), ?¥{xj+l > xj} >0, j=1,2,.... A necessary
and sufficient condition for asymptotic capital growth is gr > 1, which
is readily wverified by reference to (2-50) and the foregoing statement.

Let us now turn to Models T-TII. Defining sj and p by the
identities

(2-60) Sj = Xj + Y

1
See, for example, Edmund Phelps, op. cit., p. 735.
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c(x) = p(x +Y)

we see from (2-34), (2-38), and (2-42) that p is a constant between O

and 1, generally a different number for each model. By (2-2) we now

obtain

M
(2-61) s, = Sj“‘p)[iiz

|

(Bi—r)vi + )

where W is clearly a random variable. By the condition (2-8), .it
follows that W = 0. Attaching the subscript n to W for the purpose of

period identification, we mnote that since

(2-62) sj = s

we obtain

(2-63) sj z 0 for all j whenever 51 20

That is, when initial capital is at least equal to the negative of

the present value of the non-capital income stream (~Y), it will never
decrease below that wvalue when the individual uses the optimal strate-
gies with respect to investment and consumption. Moreover, since

PriW > 0} = 1 in Models II and III by Corollary 1, it follows that

(2-64) sj > 0 whenever sy > 0 for all finite j

in Models II and IIT.
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From (2-62) we also observe that

sj = 0 whenever S = 0 for all j > k

Consequently, x = -Y is a trapping state which, once entered, cannot
be left. 1In this state, the optimal strategies in each case call for
zero consumption, no productive investments, the borrowing of Y, and
the payment of non-capital income y as interest on the debt. 1In
Model 1, whenever Pr{W = 0} > 0, this state may clearly be reached
after only one period, regardless of the initial capital position.
In Models II and 111, on the other hand, it follows from (2-64) that
the trapping state will never be reached in a finite number of time
periods if initial capital is greater than -Y.

(2-62) may be written

j~-1

v log wn

(2-65) sj = g er1=l

j-1
The random variable Y log Wn is by the Central Limit Theorem asym-
n=1

ptotically normally distributed; its mean is (j-1)E[log W]. By the
law of large numbers,

j-1

Y. log Wn

n=1

(2-66) S E[ log W] as j— o

Thus, since sj > 5, if and only if xj > xl, it is necessary and

sufficient for capital growth to exist that

(2-67) E[log W] >0



It is clear that y given by

L = cEllog W)
may be interpreted as the mean growth rate of capital. By (2-61), we

obtain

M %
(2-68) E[log W] = log(1-p) + E[log( T (8,-1)v; + r}]
i=2
For Model III, this becomes by (2-44)

M
E[log W] = log ¢ + max E[log{ ¢ (B.i-r)vi + r}]
viZO i=2

¥ids

subject to (2-8)
Thus, a person whose one-period utility function of consumption is
logarithmic will always invest the capital available after the allot-
ment to current consumption so as to maximize the mean growth rate of

capital plus the present value of the non-capital income stream.

2.8 PROPERTIES OF THE OPTIMAL BORROWING AND LENDING STRATEGIES

The optimal amount to lend is given by zl(x); when this amount is

M o«
negative, borrowing is called for. Denoting Y v,

i=2

%
by v , we obtain
from (2-35), (2-39), and (2-43)

(2-69) z,(x) = (1-p)(1-v)x - Y[p(1-v') + v']

in Models I-III

and from (2-48)

(2-70) zl(x)

X_Y, log(-qkr) - rvx
r r y(r-1)

in Model IV.
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In each case, we find that lending is linear in wealth. Turning
first to Model IV, we observe that lending is always increasing in x.
Thus, when an individual in this model becomes sufficiently wealthy,
he will always become a lender. At the other extreme, when x is at the
lower boundary point of the solution set, he will generally be a
borrower, ﬁhough not necessarily, since zl(x) evaluated at

x = -Y + [r/(y(r~l)2)]1og(—qkr) gives
rlog(-gkr) _ rv*

S & Y(r_l)z D)

which may be either negative or positive.

Turning to Models I-II1I, we find that borrowing always takes
place at the lower end of the wealth scale; (2-69) evaluated at
x = -Y gives -Y < 0 as the optimal amount to lend. From (2-69) we
also find that zl(x) is increasing in x if and only if 1 - VJ >0
since l-p is always positive. As a result, the models always call
for borrowing at least when the individual is poor; whenever
1 - V* > 0, they also always call for lending when he is sufficiently
rich.

As remarked in 2.7, all non-capital income is allocated to the
payment of interest once the trapping state is reached. Taken in
conjunction with (2-63), this exemplifies the fact that when the
individual behaves optimally, he behaves as if the following law were
in effect: Your economic affairs must be so arranged that the proba-
bility is zero that your net worth at the end of any period will be

less than the negative of the present value of your (certain) non-

capital income stream. WNeedless to say, our solution is predicated
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on the existence of creditors who are willing to lend on this basis.
This supposition is not as far-fetched as it may seem at first glance;
many finance companies today lend large amounts on the basis of
individuals' promised non-capital income streams. Moreover, as long
as there is a market for the exchange of such loans, there is really
no need for the principal ever to be collected as long as the interest
is always paid in full when the loan reaches its maximum limit Y.
Thus, even the trapping state itself is not entirely implausible, in

this sense at least, from the standpoint of the real world.

2.8.1 The Existence of a Market Interest Rate

While this study is confined to an examination of the behaviour of
individuals in a given but risky environment, it might be well to
divert from this objective for a moment and consider how the interest
rate r-1 might be determined in an economy where each individual
behaves normatively in such a fashion that his behaviour is described
by one of the models in this study.

By Lemmas 1 and 2, we know that vi is unique in each of the models

o

for each i. Allowing r to wvary, we therefore have that v; must be a

monotonic function of r--it is readily determined that v; is

<

decreasing in r. Thus, as r increases, l-v increases; consequently,
lending, as a proportion of invested capital, is increased.

Differentiating (2-69) with respect to r we obtain
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32 (%)

= 'O -V - - PV (r)x

Y (L - V) + v ]

S Y[p(L - v + v ()L - )]

ole

<

= fx b BT -p ML - ) - % ML = p)]
- Y'(x)[p + v*(l - pJ]

> 0 if0<v <1, p'(r) <0

Ja
W

since p > 0, v '(r) < 0, and Y'(r) < 0. Since p'(r) £ 0 in Models I
and III and O < v* < 1 when short sales are nbt possible, total lending
is always increasing in r in these two models when short sales are
barred.

Now consider an economy in which individuals obey either Model T
or Model III and which bars short sales. Assume first that the
initial interest rate r - 1 > 0 causes the supply of loans to exceed
the demand for loans. A reduction of the interest rate induces
everyone, as we have seen, to lend less (or to borrow more). As r — 1
from above, Y = « which implies that zl(x) - -, that is, everyone's
net borrowing tends to infinity, which is readily seen by reference to
(2-69). By the monotonicity of zl(x) in r, the equilibrium rate of
interest must therefore be positive.

Now assume that the initial interest rate causes the demand for
loans to exceed the supply. By increasing the interest rate, equality

between the supply and demand of funds will be achieved at some finite



rate since zl(x) - (l-p)x as r = », provided that total wealth is
(substantially) positive because only then is it possible for each
individual's consumption to be non-negative. Thus, in at least the
case discussed, a unique, positive equilibrium rate of interest exists
at each decision point even if the utility function, the wealth, the
non—capitai income stream, and the probability beliefs of each indi-
vidual are different from everyone else's, as long as the combined
wealth is (substantially) positive. By the stochastic nature of
investment returns, the equilibrium rate would of course change in
each period. This is also true in the real world. To avoid the
sharp fluctuations that a pure market rate would exhibit, governments
generally fix it artificially between narrow limits--this is the
reason why the existence of a given fixed rate of interest was postu-

lated in this study.

2.8.2 Different Rates for Borrowing and Lending

We shall now consider the case when the lending rate differs from
the borrowing rate as is usually the case in the real world. We

La e

observed in 2.8.1 that the v;, and therefore v“, are decreasing

w©
functions of r; let us write the latter as v (r). Thus,

* *
= <
(2-71) v (rL) > v (rB) whenever r < rg.

Consider first Models I-III when non-capital income y = 0. 1In
that case, it is apparent from (2-69) that when the individual is not
in the trapping state, he either always borrows, always lends, or
does neither, depending on whether 1 - v*(r) is negative, positive, or

zero. It follows that if he should lend at the lending rate, he

#3
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should also do so at the borrowing rate, if he could. Similarly, if
he should borrow at the borrowing rate he should also do so at the
lower lending rate, were it possible. Thus, in these cases, the
solution is clear. The only remaining possibility is that the lending
rate calls for borrowing and that the borrowing rate calls for lending.
By the monotonicity of v*(r), the solution in this case is to neither
borrow nor lend.

Turning to Model IV, we observe from (2-70) that when y = O, zl(x)
is non-negative for all feasible capital positions whenever v*(r) <

log(-okr) /r. 1If this condition holds when r = r it is apparent that

L?
it need not also hold for r = h- Consequently, no "simple" solution
appears to exist in the case of Model 1IV.

When y > 0, the problem becomes more complicated. However, if in
Models I-III l—v*(rB) is negative, then positive lending would never
occur since use of the lending rate would also always call for

borrowing by (2-71). Thus, in this case, the solutions are as stated

with r replaced by ry-

2.9 PROPERTIES OF THE OPTIMAL INVESTMENT STRATEGIES

The properties exhibited by the optimal investment strategies are
in a sense the most interesting. Turning first to Model IV, we note
that the portfolio of productive investments is constant, both in mix
and amount, at all levels of wealth. The optimal portfolio is also
independent of the non-capital income stream (yl, Yoo ...), and the
level of impatience 1l-g possessed by the individual, as shown by

(2-48) and (2-49).



Similarly, we find in Models I-III that since for all i,k > 1,
E
zi(x)/zk(x) = v,/vk which is a constant, the mix of risky investments
i ax
is independent of wealth, non-capital income, and impatience to spend.

However, the size of the total investment commitment in each period is

clearly increasing in x and in y. We also note that when y = 0, the

M

ratio that the risky portfolio ¥ zi(x) bears to the total portfolio
i=2

M

5 zi(x) is independent of wealth in each model.

i=1

In summary, then, we have the surprising result that the optimal
mix of risky (productive) investments in each of Models I-IV is
independent of the individual's wealth, non-cépital income stream, and
rate of impatience to consume; the optimal mix depends in each case
only on the probability distributions of the returns, the interest
rate, and the individual's one-period utility function of consumption.

As to the composition of the optimal portfolio, we note from
Corollary 4 that when the returns from the various risky opportunities
are independently distributed and the one-period utility function of
consumption has no lower bound, the portfolio will be long with
respect to all opportunities i such that E[Bi] > r and short with
respect to all opportunities i ¢ S such that E[Bi] < r; all other

opportunities will be excluded.

2.10 GENERALIZATIONS

We shall now drop the temporary restrictions adopted at the end

of 2.1 concerning the non-capital income stream and the time dependence
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of the distribution functions of return Fj' Before doing so, we shall
briefly discuss the decision problem under study when the planning

horizon is finite.

2.10.1 Finite Horizon

While we have chosen to examine the preceding decision problem
for the case when the utility function is defined over an infinite
future, the finite horizon problem, as suggested earlier, is just as
amenable to solution. 1In fact, the initial approximation, fl(x), in
(2-17) was chosen in such a way that the successive approximations
would give the solutions to the finite horizon problem. Thus, the
solution to Models I and II when the horizon is N periods away is

given by (2-26)-(2-28).

2.10.2 Non-Constant Non-Capital Income Stream

We shall now consider the case when the non-capital income in
period j, yj, is not necessarily equal to y as we have assumed so far.
It is now necessary to reinstate the subscript j for variables x, c,
and z, as well as for Y and f. It is easy to show that the solutions
to Models I-IV remain unchanged except that the subscript j must be
appended as indicated. Condition (2-67) is still necessary and
sufficient for capital growth in Models I-III; since Xj > Xy if and
only if sj > sq + Yj - Yl’ capital growth exists by (2-66) if and only

if, for large j

e(j-l)E[log W] - = ¥
x1 + Yl
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or

1 X, + Y.

E[log W] > lim — log|—=1|= 0
. j-1 X, + Y

oo 1 1

since Yj is bounded.

2.10.3 Time-Dependent Probability Distributions

The assumption that the transformation Bij is identically distri-
buted in each period j for any given i will now be dropped. This also
enables us to consider automatically the case when the number of
investment opportunities Mj varies from period to period.

It is again easily shown, by the method of successive approxi-
mations applied as one would solve the finité horizon problem, that
the structure of the solutions to Models I-IV is not affected by this
change. The subscript j must of course appear for Bij as well as for
%, Cy 2zg, Y, and f; it must also be attached to the constant k in
(2-36), (2-40), (2-44), and (2-49) as well as to the variables v
This, in turn, affects the convergence condition in Model I and
condition (2-50) in Model IV. Before describing the latter changes,
let us give the solution to Model II, which exists for Xj = —Yj,

when the probability distributions of return are time-dependent and

the non-capital income stream is non-constant:
1 1 Y+l
y+1 2, _ v+1

(2:72) £,(x) = -| 1+ [al-k))] + ame

+ Y)Y
(XJ J)



1
2-73 X)) =
( ) CJ(XJ> 1 11 (xj - Yj)
+1 2 -
1+ [a(-k)IY + k), DI+ L
01T + [P (k)
_ * .

zij(xj) = (Xj + Yj - Cj)Vij i=2, ..., Mj
2-74
( ) Mj

zlj(xj) = xj - ey - iEzzij(xj)

kS

where kj and the Vij are given by

M,
(2-75) k E zJ( ) = + o
- . = - . .-T)V, . r
j i=p P17V }
Mj -y
= max E|- {53 (Bi.-r)vi. + r}
v. .20 i=2 J J
1]
¥iés.
ésJ
subject to

The convergence condition gk < 1 in Model I must now be replaced

by the requirement
(2-76) akj <1 for all j =N

where N is a positive integer. Similarly, the condition (2-50) in

Model IV now becomes
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-%
(2-77)  log(-ak,r) + b(v}) >0 all j

and the solution exists in this model for xj greater than or equal to

Max {-Y. +

1og(-qk.r)}
il yen? ]

The necessary and sufficient condition for capital growth (2-67) now

reduces, in Models I-III, to

(2-78) E[log W,] > 0 all j = N

where N is a positive integer.

It should be noted that in order to find the optimal mix of risky
investments at a given decision point, it is only necessary to know
the probability distributions of return for the current period. This
is so in all of the models. However, in order to determine the optimal
amount to consume in a given period, the distributions must be known
for the entire future, except in Model III. In this model, the optimal
consumption strategy is independent of the return distributions, as
shown by (2-42). Consequently, the only knowledge about that part of
the future which is more than one period ahead needed to maximize
utility over time in Model III, besides the utility function itself,
is a knowledge of the non-capital income stream and of the interest
rate. In essence, then, when the one-period utility function of con-
sumption is logarithmic, the sequential decision problem reduces to a
sequence of one-period decision problems, one of which is' to be solved

at each decision point.



2.11 IMPLICATIONS WITH RESPECT TO THE THEORY OF THE FIRM

We have shown that the utility functions of Models I-IV imply
that the optimal mix of risky investments in any period is independent
of wealth, non-capital income, and impatience to spend. We shall now
show that it would be reasonable to conjecture that, when the utility
function is of the form (1-5), these functions (i.e., those of
Models I-IV) are the only ones for which this property of the optimal
investment strategies holds.

To show this, assume that a solution to (2-6) exists and that the

)

% %* X
optimal investment strategy calls for the mix (VZJ, VBJ, i Sl Vij

regardless of the values of Xj’ Yj’ and ¢, where at least two of the

M,
% * J
v.. # 0 for each j. Letting v, v s /v then denotes the
ij I gug 137 T

m

proportion of the funds devoted to productive (risky) investments
which is allocated to opportunity i in period j.

Differentiating (2-6) with respect to zij

M

dE, r
@79 T4 = aEll,(r 2y (B 4 EGxgep) + yj><eij—r1

BZlJ

all j, 1 =2, .0, M,

The maximizing Zij must now be of the form

(2-80) Zij(xj) = Vijqj all i, j

where qj is some function of Xj’ Cj’ and Yj. In the case of an

interior maximum (which cannot be ruled out)
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SF.
(2-81) S =0 all i, j

7/

zij
Given that fj is non-decomposable, i.e., it cannot be writfen as
the sum or product of two or more functions, it appears possible for
(2-81) to hold for all Xj and Yj when the maximizing zij are of the
form (2-80) omnly if cj = Xj + yj/r and qj is constant or if the Bij
are identically distributed for all i such that Vij # 0 given i,
Since the latter possibility is ruled out by even the mildest require-
ment of generality with respect to the investment returns, it remains
to consider whethér it is feasible for cj to be equal to Xj + yj/r

when qj is constant. We obtain when this is the case

afj Yy Mj s
= ! - 7 -
So. ¢ (Xj + ) arE{%j+l(.§ (Bij r)vijqjﬁ
i i=2
Ti,z %
= ! ! .
u \Xj + - )+ Kj (K]constant)
so that c. = %, + yj/r with qj constant is therefore not the optimal

consumption strategy for all values of Xj and Yj. Thus, when fj is
non-decomposable, it would appear that an investment strategy such
that the mix of risky investments is invariant for all ij o, and Yj
is never optimal.

Let us therefore consider the situation when fj is decomposable.
In this case, one of the four Cauchy equations must hold. That is,

either

(2-82) fj(x + y) = gj(X) + hj(y)
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or
(2-83) fj(X +y) = gj(X)hjEY)

or

(2-84) fj(Xy) gj(X) + hj(y)

or

(2-85) fj(xy) gj(x)hj(x)

for all j. Their non-trivial solutions are given by

2-86) f,(t) =a,t+b,+d., g.(t) =a.,t +b,, h,(t) =
( ) J( ) ; ; 3 (gJ( ) 2, 32 J( )
Yst Y3t Yst
2-87 £.(t) = a,b.e , g.(t) = a.e , h.(t) = b.e
( ) J( ) ab, gJ( ) 3 J( ) 3
2-88 f.(t) = a,log(b.d.t), g.(t) = a.log(b.t), h,(t) =
(2-88) J( ) 5 g( 5935 ) gJ( ) 5 g( ; ) J( )
(2-89) £.(6) =ab,ed, g (6) i he) = b
- (t) =a.b.t °, g.(t) = ast °, h,(t) = b.t
j i 8j J J( j
respectively, where aj, bj’ dj, and Yj are constants.
Consider (2-89) first. (2-6) now becomes
Y Y3 Y+l
- b J = 1 J
(2-90) aj jxj max u(cj) + o(,aj+l(xj + " cj)
Mj ; y
_ Tij j+l
bj+lE {z (Bij r) + r}
i=2 V.
X, + = - ¢
J r ]

lSee J. Aczél, Vorlesungen . . ., pp. 116-118.

a.t + d,
J ]

a.,log(d.t
3 g( 3 )
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But when we maximize with respect to Cj and Zij’ we know from

Theorem 2 that the last factor is equal to kj as given by (2-36) or

(2-40) and also that the optimal investment mix is invariant for all

Xj’ Yj’ and . Thus, we are left with an equation of the form

. V. Y.
ab,x, J = max {u(c.) + a.+lb.+lak.(x.~c.+ ;l) J+l}
Ogcjsxj+Yj J J J 33

Consequently, u(cj) must satisfy the equation
Y. Y.
i j+1

2-91) a.b.c, ° = u(c,) + a, ,b. .ak.(v./r

(2-91) ape, () + ai by quk, (v /D)

so that

u(c) = Ke' + a (X, a, y constants)

which leaves as the only possible utility functions

(2-15) u(e) = cf 0<y<1

il

Il

1

(9]
1
<

(2-16) wu(c) vy >0
Similarly, from (2-87) and (2-88) we obtain

I

(2—45) U(C) Y > 0

(2-92) wu(ce) log ¢

while no utility function exists in the case of (2-86) due to the

linearity of that function.

We shall now summarize the main result obtained in this study in

the following theorem:



1)

2)

3)

4)

5)

6)

7)

Theorem 5. Given the foliowing:

An individual whose economic objective is the maximization of
expected utility from consumption over time and whose preferences

are representable by

A utility function U = aj—lu(cj), 0 << 1, defined for all

]

o~ 8

1
Cj 2z 0, where cj is the amount consumed in period j, such that
u(cj) is strictly concave, twice differentiable, and monotone
increasing over its entire domain.

Interest rate r-1 > 0 at which funds may be both borrowed and lent.

A non-capital income stream (yj, ...) where yj is the instal-

yj+l,
ment received with certainty at the end of period j. Its present
value at the jth decision point, on the basis of interest rate r-1,
is Y..

J
Wealth Xj at the jth decision point where x, =z -Y

1 1

The opportunity to lend unrestricted amounts and to borrow up to

amount Yj on the security of the non-capital income stream alone.
Additional funds may be borrowed to the extent that principal and
interest can be repaid with certainty in one period.
The opportunity to invest at each decision point j in wventures
which are subject to risk., For each venture, the return is
realized in cash at the end of the period; returns to scale are
constant. If Bij is the transformation in period j of a unit of

capital invested in opportunity i, then 0 < Bij < for all i

and j. The distribution functions Fj where
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Fj(xz,xg,.,.,xMj) = Pr{gzj < Xy BBj < x3,...,Bij < xMj}

are assumed to be known and independent for all j. Moreover,

M.
]
Pr{ ¥ (B,.-1r)8,. < 0} > 0 for all j where the O, are finite numbers
i=2 1] 1] 1]

such that Qij 2 0 for all opportunities i which cannot be sold short
in period j and Qij # 0 for at least one 1i.

Then the optimal mix of risky investments in each period j is
independent of the wealth Xj’ the non-capital income stream
(yj, yj+l,...), and the impatience rate 1-g 1f the one-period utility

function u(c) is such that either the risk aversion index q{c¢) given

by

(2-56) a(e) = - e

o,

or the proportional index q&(c) given by

(2-93) 4" () = -LHEE

is a positive constant, that is, u{c) is one of the functions {(2-15),
(2-16), (2-92), or (2-45). Alternatively, the optimal mix of risky
investments in any period depends only on the set of distribution

functions {Fj}, the interest rate r-1, and the {risk aversion)

Jo
W

index q or q .
The implications of this result are particularly significant in

respect to the theory of the firm as we shall now demonstrate.
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2.11.1 Bases for the Formation of Firms

The following consequence is immediate:

Corollary 5. Given the antecedents of Theorem 5 and a collection of
individuals whose risk aversion indices q or q* are positive constants,
there is a basis for the formation of firms, one for each non-identical
pair (q,{Fj}) and (q*,{Fj}), such that individuals with the same risk
aversion index and the same probability beliefs may delegate the choice
and mix of productive (risky) investments to the same firm regardless
of their wealth, non-capital income, and impatience to spend.

By the words "may delegate" we mean that the individual would be
indifferent between making the risky investments himself and turning
the total amount allocated to risky investments over to a firm for
investment. The firm {q*S{Fj}) will be said to be compatible with
individuals whose risk aversion indices are c;C and whose probability
beliefs are given by {Fj}.

This result may be interpreted in two different ways. From a
normative point of wview, it indicates that there 1s a rational reason
for economic cooperation {or, more accurately in our framework, no
rational reason for non-cooperation) among individuals with different
goals and in different economic circumstances. Descriptively, the
corcollary implies that the economic cooperation we observe among
unlike individuals in the real world is consistent with, and may

possibly have arisen as a result of, each individual's (selfish)

desire to maximize expected utility from consumption over time.
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2.11.2 The Firm's Objective and Its Optimal Capital Structure

We shall now continue on the path which has just been broken. The
next implication which we shall state formally is
Theorem 6. Given the antecedents of Theorem 5 and a firm in the sense
of Corollary 5, the objective of the firm may be stated as: In each

k4 w* L. L. .
period j, invest proportion Vij/vj of all capital in activity 1,

M.
% 3 % %
i=2, ..., M., where v, = ¥ v.. and the v,, are the values of v,
j oo ij ij
i=2
which maximize
.
(2-94) E[u{ (B, .-t)v,. + 1}
, 1] ij
i=2
subject to {2-8) and (2-9) whenever -cu''(c)/u’(c) is a positive
constant, or which maximize
M,
J
(2-95) E[ul £ (B, .-t)v. )]
, ij 1j
i=2
subject to {2-9) whenever -u''(c)/u'{c) is a positiwve constant,
e
assuming, in each case, that Vj > 0. Morecver, when the firm has
unlimited liability, the optimal capital structure (the ratio between

debt and equity capital) of the firm is arbitrary.

Proof: The first part of the theorem follows immediately from (2-35),
(2-39), (2-43), and (2-48). Turning to the second part, let the
individual's optimal investment strategy call for allocating, in a

given period, amount a, to risky investments and a, to lending

1 2

{(borrowing when a, is negative). Let the (final) debt-equity ratio

2
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of the firm at the decision point in question be 6 2 0. Then by
investing al/(1+9) of equity capital in the firm, the individual

obtains the benefit of (1 + Q)al/(LfQ) = a, invested in the risky

1
investments. If the individual lends the difference a; - al/(l+9),
his lending becomes a, *a; - al/(1+9). But his "share'" of the debt

of the firm 1is Gal/(1+9); his "net" lending is therefore

- al/(1+9) - Qal/(l+9) = a;. Thus, 6 may be chosen

a, + a;
arbitrarily,

Thus, starting with a collection of heterogeneous individuals,
each of whom is bent on maximizing (his own) utility from consumption

over time, we have not only found that there exists a basis for the

formation of firms by sub—colleﬁtions of individuals (each sub-

collection in turn possessing significant heterogeneity), but that
each such firm has a well-defined (unique) objective function and that
its capital structure (debt-equity ratio) is unimportant. The firm's
objective function may be said to call for "profit maximization"

where the precise meaning of this term under risk and with respect to

time has been induced from the most primitive of inputs: the
preferences, the economic circumstances, and the perception of
opportunities of its owners. Note that the maximization of (2-94) or
{2-95) may be viewed as the short-run objective of the firm but that,
performed repeatedly, the short-run maximization process also yields
the long-run objective.

Concerning the optimal capital structure of the firm, Theorem 6
has an interesting relation to Proposition I of Modigliani and Miller:

"The market value of any firm is independent of its capital structure
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and 1s given by capitalizing its expected return at the rate Qk
appropriate to its class.”l To the extent that this proposition may
be interpreted to mean that the optimal capital structure of the firm
is arbitrary, Theorem 6 does, of course, support the proposition.
Perhaps the chief practical significance of Theorem 6 lies in the
fact that it is often easier for the firm to borrow money than for the
individual to do so, especially when his net worth is negative. As
indicated in the proof, individuals have the opportunity to shift,
without loss of utility, a large portion of their borrowing require-
ments to the firm. Whenever a, < 0 and 6 is such that
a

- al/(l+9) > |a we find that the individual should,. instead of

1 2"

borrowing on his own account, become a lender. Clearly his lending
might take the form of a position in the bonds of his own firm!
When yj = 0 for all j, the ratio between the financial portfolio

and the productive portfolio is constant for all Xj since

M

Jzij(xj) = (l—v?)/v? which is a constant. Thus, the owners
may in this case delegate all of their borrowing {(or lending) require-
ments to the firm.

Note also that when yj = 0 for all j and ufc) = log ¢, the
function (2-94) to be maximized by the firm coincides with that pro-
posed by Breiman and by Brown; by maximizing the expected logarithm

of capital in each period, the long-run capital position of the firm

1 . .

Franco Modigliani and Mervin Miller, "The Cost of Capital,
Corporation Finance and the Theory of Investment,' American Economic
Review, June 1958, p. 268.
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will be greater than under any other policy with a probability
approaching l.l We have thus found (rational) stockholders or partners
who would subscribe to the firm investment strategy suggested by

Breiman and by Brown.

2.11.3 The Debt of the Firm: Limited Liability

When the legal status of the firm is such that it has limited
liability (e.g., it is a corporation), the amount the firm may borrow
is clearly not arbitrarily large since lenders expect both interest
and the repayment of principal with probability 1{(at least in our
model). However, since they have first claim against the firm's
assets, there is a limit up to which they should not hesitate to lend.
Formally we obtain
Theorem 7. Given a firm in the sense of Theorem 6 but with limited
liability, the optimal capital structure of the firm is arbitrary
except that there is an upper limit on the firm's feasible debt-equity
ratio imposed by the limit attached to its liability. The upper limit
on the debt-equity ratio in period j is given by

% e
1 4+ b{wv, .
wJ)/vJ

(2-96) 1 - b(%?)/v?

ta

where b(%g) is the greatest lower bound on b such that

M.

{5 < b)
Pri ¥ (B, - L)v,. < b}y >0
i=2\ i ij

lLeo Breiman, "Investment Policies for Expanding Businesses
Optimal in a Long-Run Sense,” Naval Research Logistics Quarterly,
December 1960; CGeorge Brown, Unpublished Notes, (1964).




%
and vj = (sz,u.,,ijj),

Proof: Let Gj be the firm's debt-equity ratio and Xj its equity
capital at the jth decision point. Then the greatest lower bound on

the firm's assets at the end of period j is
(2-97) x.(6 41 [1 + b(v ) /v ]
K&~ X, L) v, v,

J 3 J J

by Theorem 6 while the creditors are owed XjG.r. Thus, it is
necessary for (2-97) to be at least as large as ijjr in order for
the creditors to receive their due with probability 1. Solving for
Oj we obtain (2-96). It follows from (2-8) and the ''mo-easy-money
condition'" in 2.1 that -1 < b(%?)/vj < r - 1 since the firm can only

o

% - k3
exist if Vi # 0 for at least one i and we find that b(vj)/vj <r -1

ate

for all such %3.

ks

It is readily seen that when b({;;)/vJ is close to its upper limit,
the maximum debt-equity ratio will be relatively large, and vice-versa.
This may in part explain why public utilities, for whom losses, if

any, are typically small, are often found to have a higher debt-equity
ratio than for example small electronics companies, for whom large
losses are much more probable. This is because almost any saslection
process in which each non-degenerate interval on the feasible debt-
equity ratio scale of the firm has a positive probability of being
chosen would produce this result. (Since the optimal debt-equity ratio
is arbitrary, any selection process which will choose a feasible ratio

with probability 1 would of course also be optimal.)
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CHAPTER II1

APPLICATIONS AND EXAMPLES

In this chapter, we shall illustrate the results obtained in Chapter
Il by means of examples. In addition, we shall discuss briefly some

of the applications to which the model studied there lends itself,

3.1 INDIVIDUAL DECISION-MAKING

The central core around which the model in this study was devel-
oped is the individual, faced with the economic decisions he must un-
avoidably make, whether consciously or subconsciously. Let us now
compute what his optimal decisions would be for certain utility func-
tions and under a given set of opportunities. For illustration, let the
financial and productive opportunities be as follows in each period.

Bl =3 = 1.05

g = j . 95 with probability . 5
2 . 1. 20 with probability . 5

(3-1) { .75 with probability . 6
2

.00 with probability . 4
| . 60 with probability . 3
By =

1. 20 with probability . 7

For simplicity, we shall assume that BZ’ 3

By, and 84 are independently

distributed and that each opportunity may be sold short. When the
patience rate o is . 88 and the non-capital income is $10C, 000 in each
period, the optimal consumption and investment decisions for the
oﬁe—period utility functions u{c) = \/—:, u(c) = - CDZ, and uic} = logc,
respectively, are given in Tables II, III, and IV. As the tables show,

the person whose one-period utility function is"\/—c—h invests and
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borrows more and is able to achieve a higher growth rate than

persons whose one-period utility functions are —c™% or log ¢, given

the same opportunities. However, the price he pays is reflected in

his consumption rate, which is the lowest of the three. The highest
consumption rate is exhibited by the person whose utility function is
logarithmic; note also that this person's investments and capital growth
are greater than those associated with utility function -cbz. It is ap-

parent from the tables that the wealth of the individual in Table II

i

(u(c) \f&) fluctuates the most and that of the individual in Table III

(u(c) = ~¢ 7) the least. In the examples, only the person in Table III

-¢ ) will ever be a lender.

£
o
l

Since no solution exists in the case ¢f Model IV when -akr <1, we
have summarized in Table V the optimal capital allocation for the case

-.0001%c

when ulc) = -e =.99, r = 1.06, and BZ may assume each

of the values .96 and 1. 17 with probability . 5 {one risky opportunity).

Table VI gives an idea of how the optimal consumption and invest-
ment decisions are affected by differences in the impatience rate.
As patience increases, it is seen that current consumption decreases
and investment increases. The effect of the size of the non-capital
income stream is illustrated in Table VII. This table also demon-
strates that individuals who have the same x + Y (= x +y/r - 1)
{should) make the same decisions with respect to consumption and
investments. Only their borrowing and lending differ - by the amount
that the present values of their non-capital income streams differ.

Recall that the mix of productive (risky} investments is unaffected,
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for a given one-period utility function, by differences in impatience,

wealth, and non-capital income.

3.2 THE BALANCED MUTUAL FUND

In 2. 11 we discussed the implications of our model with respect to
the theory of the firm. One type of firm for which our assumptions
concerning the investment opportunities hold quite well is the mutual
fund. This is so because the opportunities considered by the mutual
fund tend to be liquid, to be highly divisible, to have constant returns

to scale, and to have proportional conversion costs.

The chief purpose of the so-called balanced mutual fund is to invest
in such a (balanced}) way that its share-holders should not have to
make any risky investments except the purchase of shares in the fund
itself. L Now it follows from Cecrollary 5 that any balanced mutual
fund that wishes to sell its shares on this basis even though all indi-
viduals are in different economic circumstances {(i.e.,, their wealths
and non-capital income streams are different}, possess varying de-
grees of impatience, and behave so as to maximize expected utility
from consumption over time may still have a sizable market. This

market consists of all individuals whose one-period utility functions

-

are identical, having one of the forms ulc) = C;Y, 0 < & < 1,
uf{c) = —c"'y, v > 0, ulc) = log ¢, ufc} = -e ., v » 0, assuming that
U is of the form {(1-5) in the first place, and who have the same prob-

ability beliefs with respect to the returns from risky investments.

In view of our conjecture at the beginning of 2. 1:, it would be

1 See, for example, Douglas Hayes, Investments: Analysis and
Management, New York, MacMillan, 1961, p. 398.




surprising if any utility functions not included in the preceding state-
ment exist for which a given balanced mutual fund would have appeal
to rational (in the sense of the expected utility principle) individuals

in non-identical economic circumstances.

A sensible objective for the balanced mutual fund desiring to attract
a large number of investors in a world of ratiornal but heterogeneous
individuals, then, is that given in Theorem 6. Even if the possibility
of differences {among funds) in the subjective probability distributions
of return were ignored, there is, even within the confines of this
theorem, a theoretical basis for the existence of an infinite number of
different balanced mutual funds, each characterizable by a unique

risk aversion index q or g* {as given by (2-54} and {2-93) ).
q q g )

3.3 ENDOWED EDUCATIONAL AND CHARITABLE ORGANIZATIONS

The model developed in this study also appears to be ap];;licable in
the case of endowed educational institutions such as private universi-
ties. All utility of such organizations appears to be derived via oper-
ating expenditures, which, if the rental value cf physical assets owned
and utilized are included in this category, therefore correspond to
consumption in the case of an individual. The non-capital income
stream consists in this case of such items as tuition and cther fees,
grants, and bequests. Furthermore, both financial and productive
opportunities exist, and are usually taken advantage of, with respect
to that part of the capital (endowment) not allocated to the current
operating budget. Thus, the model developed in this paper appears
to apply also to the basic decision problem facing the endowed educa-

tional organization,
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Similarly, the model would be applicable to endowed charitable
organizations. Here, utility is derived via donations which therefore
correspond to consumption in the case of the individual. In fact, the
additivity property of (1-5) appears almost harmless in this case
since we would not expect much of a ratchet effect, for example, with
respect to the giving of a private foundation. The non-capital income
stream would be represented by new contributions to the endowment,
it any. Finally, unspent funds must be invested; consequently the de-
cision problem faced by the endowed foundation is of the same type as

that which has been modeled in the case of the individual.



CHAPTER IV

RELATION TO OTHER MODELS

In this chapter, we shall examine the more important models
belonging to the growing literature on normative consumption and in-
vestment behaviour. In so doing, we shall compare these models with

Models I-IV and attempt to pinpoint salient similarities and differences.

4.1 FISHER'S MODEL OF THE INDIVIDUAL

As was pointed out earlier, Models I-1V are conceptually closer to
Fisher's model of the individual than to any other. They may in fact be
viewed as a formalization of Fisher's ideas for the class of utility func-
tions (1-5) when risk is present. To bring the precise relationship into
clearer focus, let us briefly review Fisher's solution for the two-

period case.

In Fig. 2 the horizontal axis represents consumption in period 1 (cy)
and the vertical axis consumption in periocd 2 (cz‘)u The utility function
U(Cl’ CZ) is represented by indifference curves which are convex to the
origin {by the monotonicity and strict concavity of U). The individual's
objective is to maximize utility over time, i.e., to reach the highest
indifference curve within the limits of his resources (capital %1 and

non-capital income y) received at the end of the first period).

Without engaging in any transactions, the highest utility the indivi-
dual can obtain is U; which is the utility of the consumption program
(Xl’ yl) (point A). However, by borrowing in the first period, he may

achieve any consumption program (cl, c,) lying on the line AC. Simi-

2)

larly, by saving in the first period he may attain any consumption

103
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Figure 2. Fisher's Solution

combination lying on the line AD. Since U, is the highest utility asso-
ciated with any point on CD, the individual's optimal strategy with
respect to the first period, given only financial opportunities, is to
consume Xrl and to save Xy - xi, Note also that the maximum amount
the individual may borrow on the security of his non-capital income is
yl/r, or the present value of his non-capital income stream (see

1.3.4, 2.8, and Theorem 5).

The locus of productive opportunities attainable by the individual

(by borrowing yl/r) is given by the curve CE. These opportunities
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have been ranked in descending order on the basis of their certain rate

it

1 in these opportunities, the indi-

of return. By investing x; + yl/r - x
vidual may attain (the maximum) utility level U3 (point F'). However,
the opportunities offered him have still not been exhausted. By moving
to point G on the productive opportunity curve, the individual may, by
borrowing El ~ XI]” on the security of his productive investments, attain

i

utility level U4 > U3 at point J on the (highest attainable) financial op-
portunity line HI. Thus, the individual's optimal strategy with respect

to the first period is:

Borrow yl/r + (El - X‘l")

B

Invest (x; + v, /r) - x| (in productive opportunities)

Consume cy

This will leave 52 to be consumed in the second period.

The differences between Fisher's model and Models I-IV are now

seen to be the following:

1. While Fisher's model permits the utility function to be of any
meaningful form, Models I-1V are restricted to utility functions
of the form (1-5} where u(c) is given by (2-15), (2-16}, {2-92),
or {(2-45).

2. In Fisher's model, the productive investment returns are
known with certainty, while in Models I-IV the returns from
productive opportunities are risky.

3. In Fisher's model, the productive opportunities have diminish-
ing returns to scale beyond some point, while in Models I-IV
returns to scale are constant. Note that constant returns to
scale in Fisher's model when Bi > r for at least one i gives an

infinite solution.



106

In Fisher's model, a solution is generally difficult to obtain
when the horizon is more than 3 periods away since it is usually
not available in analytic form. In Models I-1V, an analytic solu-

tion is available when the horizon is arbitrarily distant.

4.2 CONSUMPTION MODELS

In this section we shall examine the models which have been designed

to determine how much an individual should optimally consume. Since

in these investigations the only alternative to consumption generally is

saving, these models are also known as savings models. We shall ar-

bitrarily refer to those models in which the returns from savings (in-

vestments) are known in advance with certainty as the classical con-

sumption models.

4. 2.

Classical Models

The classical consumption models may be characterized as follows:

1.

The objective is to maximize a functional H(u(c(t))) where

c(t) > 0 is the rate of consumption at time t and u is the utility
indicator of this rate. The function u is generally assumed to
be strictly concave. The time horizon may be either finite or
infinite. Impatience is generally present in the form of a
function «(t).

The individual's resources consist of an initial capital position
and may include a non-capital income received at the rate y(t).
All assets are assumed to be invested at all times in (generally)
a single opportunity. The return from this opportunity, r(t),
may be a function of fime t but is always known with certainty.

Returns to scale are usually constant,



4. DBorrowing is sometimes permitted at the rate r(t) - 1.

The first classical savings model is that of Raumsey.l Ramsey's
utility indicator had an upper bound (corresponding to bliss) but no im-
patience factor. While he permitted non-constant returns to scale, he

did not allow borrowing. Ramsey's analysis was later extended by

Samuelson and Solow to the case of several opportunities (commodities)??

Tinbergen has also examined the classical consumption problem but

without the assumption of finite bliss. 3.4

The classical consumption model has recently been extended by
Yaari. In one paper, Yaari considers the case when the individual has
a bequest motive, which is represented by a utility function defined on
the possible levels of wealth at the (finite) horizon point°5 A second
paper introduces two additional features: the horizon is treated as a
random variable and the individual may invest in actuarial notes as an

¢

. . [o} . . . .
alternative to saving. An actuarial note is a contract which pays a

higher rate of interest (also certain) during the individual's lifetime,

I Frank Rams ey, ""A Mathematical Theory of Saving, " Economic
Journal, December 1928,

2 Paul Samuelson and Robert Solow, '""A Complete Capital Model In-
volving Heterogeneous Capital Goods, " Quarterly Journal of
Economics, November 1956.

3 Jan Tinbergen, ''The Optimum Rate of Savings,'' Economic Journal,
December 1956,

4

Jan Tinbergen, '"Maximization of Utility over Time, " Econometrica,
April 1960.

5 Menahem Yaari, "On the Consumer's Lifetime Allocation Process,"
International Economic Review, September 1964.

6 Menahem Yaari, "Uncertain Lifetime, Life Insurance, and the
Theory of the Consumer, ' The Review of Economic Studies, No. 2,

1965.
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but which becomes worthless upon his death. Thus, the latter model
also introduces the question of portfolio selection into the individual's

decision problem,

It is clear at this point that the basic difference between the classical
consumption models and Models I-IV is that the returns from the avail-
able investment opportunities are assumed to be certain in the former

models and risky in the latter models, except for borrowing and lending.

4. 2.2 Phelps' Model

Phelps was apparently the first to introduce risk into the capital
transformation of the classical consumption 1rnodel.,1 He considered all
capital left after the allotment to consumption to be subject to the same
probability law, thus ruling out the necessity of allocating one's re-
sources among several opportunities. This probability law was also
assumed to be invariant over time. The utility functiocn considered by
Phelps was that given by (1-5). The individual was assumed to have a
constant non-capital income stream but to have nc recourse to borrow-~

ing. As indicated in 2.2, Phelps problem may therefore be stated as

(2-6b) f(x) = Max {u(c) + oE[f(B(x-c) + y)] 1
0<c<x /

where ¢ is bounded from above by the individual’'s wealth, since bor-
rowing is not permitted.

Phelps solves (2~6b) for the utility functions {2-15) and (2~16)
(u(c) = 7, o< v <1, ulc) = -7, v > 0), and for u(c) = log c

when y = 0. Unfortunately, his solutions are incorrect when y > 0

1 Phelps, op. cit.



and the distribution of B is non-degenerate. For example, when

u(c) = -c”7, the solution is asserted to be, lettingB = E[B~7]
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whenever a8 < 1. But for this to be a solution, it would be necessary

to be able to write

Yy
B[]

(4-2a) E[(B(x-c)+y) 7] = E[B V]| x-c+

L

which clearly is impossible unless the distribution of B is degenerate.
While (4-2) is correct when the distribution of S8 is degenerate (i. e.,
under certainty) for all x > 0, (4-1) holds even then only when af3 > 1

and x > [(aé)_l/(yﬂ) - l‘] y/(B-1), i.e., when the first quantity on the
- cal

right-hand side of (4-2) is less than or equal to x in all future periods.

It appears that an analytic solution to {2-6b) does not exist when
the distribution of § is non-degenerate. It is ironic, therefore, that
when one generalizeé Phelps' problem by introducing the possibility of
choice among risky investment opportunities and the opportunity to
borrow and lend (see 2-6a), an analytic solution does exist. It is the

second of these generalizations which guarantees the solution in closed

The right side cf{4=-2a)may, of course, be regarded as a first-order
approximation of the left side when the variance of 3 is small.
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form. In summary, then, Models I-IV may be viewed as a
generalization of Phelps' model, to which this study owes a great debt,
to the case when the individual faces any number of risky (productive)
opportunities {which may depend on time), along with financial cpportun-
ities, and the opportunity to receive a not necessarily constant non-

capital income stream.

4.3 INVESTMENT MODELS

In the past fifteen years, increasing attention has been focused on
the subject of normative investment behaviour in the presence of risk
or uncertainty. All of the investment models known to the writer which
have been constructed to deal with this problem take capital as the fun-
damental object of choice. This is of course a significant drawback
in terms of the Fisherian approach in which only alternative consump-
tion programs are ultimately relevant for investment decisions (see
1.1). It was shown in 2. 2 that when this approach is used, the utility
of capital depends not only on the individual's consumption preferences
but on his non-capital income, the interest rate, and the available in-
vestment opportunities and their riskiness, bcth present and future.
The utility of capital, therefore, is truly an induced utility requiring
for its derivation, as was seen in Chapter 2, complex logical opera-
tions which most individuals undoubtedly would find difficult to carry

out in their heads. More importantly, {2-6) points out that the utility

of capital is not necessarily independent of the other inputs used in the

decision model (e. g., the return distributions). The chief criticism
that one may advance against present investment models, then, is not

that they assume a given utility of capital but that they do not state the



conditicns under which this utility function makes sense, if at all, in
terms of more primitive preferences. A second drawback is that these
models almost universally ignore the non-capital income, when present,

of the individual.

Most normative investment models dealing with risk can be classified
into one of three categories: thcse based on the mean-variance ap-
proach, those employing chance constraints, and those primarily con-

cerned with long-run results.

4.3.1 The Mean-Variance Approach

The basic characteristic of the models belonging to the mean-
variance category is that they are 1) nonsequential and 2) concerned
only with the first and second moments of the capital position distribu-
tion at the end of the (current) period. The limitations inherent in the
first of these characteristics were’indicated in 1.1 and will therefore
not be discussed here. The assumptions concerning investment oppor -

tunities generally coincide with those given in 1. 3.3 and 1. 3. 4.

Objective function. In the mean-variance models, letting x (which

is exogenously determined) represent the capital to be invested at a

given decision point, the objective function commonly takes the form
(4-3) Max {aE[X] - Var [X]}

subject to

M
(4-4) z z, < x (unless borrowing is permitted)
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where
| M
(4-5) X = ) { - iz, +rE
i=2

a is a positive constant, and Var[X] is defined as the variance of the

random variable X,

A modification of {4-3} is given by
(4-6) Min Var[ X]
subject to (4-4) and

(4-7) El X] > EO (EO constant)

A third version of {4-3) is
(4-8) Max E[ X]

subject to (4-4} and
(4-9) Var[X] < V

(V. constant)

0 0

while a fourth modification is given by

Elx] - d

{4-10) Max T7
{Var{X_l}

2

subject to {4-4) where d is a constant, The objective function {4-3;

has also been used in models in which the z, may assume only discrete

1
values, e.g., in capital budgeting applications. ~

ionale behind the model. here are east four origins to
Rationale behind th odel. TI at 1 tf g t

which the rationale behind the mean-variance approach can be traced.

(These origins are not in one-to-one correspondence with (4-3), {4-6),

! See Joel Cord, "A Method for Aliocating Funds to investment Pro-

jects when Returns are Subject to Uncertainty,' Management Science,

January 1964.
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(4-8), and (4-10).) C:e may be termed the intuitive explanation and
goes back to Markowi.z with whose name the mean-variance approach
is usually associated. This explanation essentially states that '"high

""is undesirable.

return' is desirable and that "uncertain return
"Return' is then defined as expected capital at the end of the period

(E[X]) and "uncertain return' as the variance of the capital position at
the end of the period (Var{X]). Among those who have followed Mark-

owitz' lead and modified or extended his approach are Cheng, 2 I\/IaLrtin,3

Sharpe, 4 and Baumol.

A second derivation of the mean-variance criterion is the following:
Let u(x) be the utility of money where u(x) is twice differentiable,
strictly increasing, and strictly concave. Then, expanding u(X) into a
Taylor series about the point E(X), we obtain, upon dropping all terms

beyond the third and translating the origin

- 1 -
(4-11) Elwx)] = E[X] + ~ u'! (E{X]) Var[X]
where —%—ﬁ” (E[X]) < 0 by the strict concavity of G. This derivation is

1 Harry Markowitz, "Portfclio Selection, ' Journal of Finance, March
1952; Harry Markowitz, Portfolic Selection, New York, John Wiley,
1959, p. 6.

2 Pao-Lun Cheng, '""Optimum Bond Portfolio Selection,' Management
Science, July 1962.
3 A.D. Martin, Jr., '"Mathematical Programming of Portfolio Selec-

tion, "' Management Science, January 1954,

4 William Sharpe, "A Simplified Model for Portfolio Analysis, "
Management Science, January 1963.

5 William Baumol, "An Expected Gain-Confidence Limit Criterion for
Portfolio Selection, ' Management Science, October 1963,




due to Marschak! and was later taken up by Farrar. 2

The third starting point is that of Freund. 3 He considers the case
when the utility of capital u(x} = __ew'yxw > 0) {which is the function

(2-45}), and X is normally distributed. It is taen easily shown that

Elux)] = E[X] - %Var [X]

which is the same function as {4-11) except for the constant.

The fourth derivation is due to Roy who proposed that investors a-
dopt the principle ''safety first'. According to Roy, this principle calls
for maximizing the probability that X exceed some value d(< E{X]).Al'

By Chebyshev's inequality,

Var [ X]
(BE[X] - )

from which we obtain

Var [ X]
(E[X] - a)°

Pr{x < d} <

If instead of minimizing the left side of the inequality we operate on

the right side, we obtain (4-10j}.

Jacob Marschnak, "Why 'Should' Businessmen Maximize 'Moral Ex-
pectation''"?, Second Berkeley Symposium on Mathematical Statistics
and Probability, Berkeley, University of California Press, 1951,

p. 498,

Donald Farrar, The Investment Decision Under Uncertainty, New
York, Prentice-Hall, 1962, pp. 20-21.

Rudolf Freund, '"The Introduction of Risk Into a Programming Model',
Econometrica, July 1956, p. 255,

A.D. Roy, ''Safety First and the Holding of Assets,' Econometrica,
July 1952.
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The mean-variance approach and the expected utility principle,

Tobinl and Borch2 have shown that when no restriction is placed on the
distribution of X, the assumption that utility is increasing in E[ X] and
decreasing in Var | X] is consistent with the von Neumann-Morgenstern
postulates only if the utility of capital is given by G{x) = bx - XZ {b con-
stam’c).3 However, if the probability distributions of return are com-
pletely specified by the first two moments, as in the case of the normal
distribution, any ccncave utility function satisfies the consistency re-
quirements. These limitations constitute a serious drawback to the

mean-variance approach indeed as we shall demonstrate in a moment.

The separation theorem. Tobin was apparently the first to show

that the optimal mix of risky investments under the mean-variance ob-
jective is independent of the total amount invested 32.4 This result is
usually referred tc in the literature as the separation theorem and has
subsequently been extended by Lintner. > The theorem is also readily
proved by Lemma 1 and holds, as was seen in Chapter II, for utility

functions other than those implied by the mean-variance criterion.

1 . g . .
James Tobin, ''Liquidity Preference as Behaviour Toward Risk, "

The Review of Economic Studies, February 1958.

2 Karl Borch, "A Note on Utility and Attitudes to Risk,' Management
Science, July 1963.

3 Glx) is usually written

a{x} = x - ax? a >0

which, as Professor Marschak has kindly pointed out to me,
involves a slight loss of generality.

4 Op. s cit., pp. 82-84.

John Lintner, '""The Valuation of Risk Assets and the Selection of
Risky Investments in Stock Portfolios and Capital Budgets,' Review
of Economics and Statistics, February 1965.
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Limitatiorns. Since the function u{x) = bx - x% decreases in x for
x > b/2, it does not have the monotonicity property that we would ex-
pect the utility of monevy to have. As a result, the mean-variance cri-
terion may lead to nonsense decisions. In this conjunction, Massé has
given the conditions under which an investcr using the mean-variance
criterion would choose a portfolio which is dominated by another feasi-
ble portfolio. The portfolio whose return is represented by the distri-
bution function Flix} is said to be dominated by the portfolio whose re-
turn is given by the distribution function FZ(X) whenever Fl(x} > FZ(X)
for all x and F{x) > F,{x) for x¢ P where Pr {xe P} > 0.1 1n this sit-
uation, we would clearly expect no individual to choose Flix) over
FZ(X).

A second drawback of the quadratic utility function is that it implies
increasing risk aversion, thatis, q{x) = - 0'"{x)/0'({x) is increasing in

x. As Arrow has pointed out, this implies that the total amount allo-

cated to risky investments decreases with wealth which seems highly

unrealistic. & Despite its current popularity, it is clear that the mean-
variance approach has significant theoretical shortcomings as a pre-

scriptive model of investment behaviour.

In summary, then, Models 1-IV are considerably more general in
their scope and in their approach to the investment problem than the
normative models based on the mean«variance approach: the consump-

tion program rather than capital is taken as the fundamental object of

Pierre Mass€, Optimal Investment Decisions, New York, Prentice-
Hall, 1962, pp. 212-213.

2 Kenneth Arrow, "Comment on Duesenberry's "The Portfolio Ap-
proach to the Demand for Money'," Review of Economics and Statis-
tics, Supplement, February 1963.
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choice, the sequential nature of the investment process is recognized
explicitly instead of not at all, the decision concerning how much to in-
vest and/or to borrow is endogenous rather than exogenous, and the
individual's non-capital income stream is an integral part of the model
instead of being outside it. . Furthermore, Models I-IV possess none
of the drawbacks of the mean-variance models such as increasing risk

aversion and decreasing utility of capital beyond a certain capital level.

4, 3.2 Chance-Constrained Models

Probably the most well-known investment model based on the
method of chance constraints is that of Naslund and Whinston. 1 They
consider the case of an individual with a known non-capital income

stream who has already decided how much to spend on consumption up

to a specified decision point n. The objective is postulated to be the
maximization of the sum of the expected gains from investments in
each period up to the horizon {decision point n) subject to two con-
straints. The first constraint places an upper bound on the probability
that a capital loss in a given period may exceed a prescribed limit.
The second constraint requires invested capital in each period to re-
main, with a given {(minimum) probability, below a limit determined
by the capital gains accumulated so far and the accumulated net sav-
ings resulting from the non-capital income after consumption require-
ments have been satisfied. In our notation the problem may be stated

as

L Bertil Naslund and Andrew Whinston, ""A Model of Multi~Period
Investment Under Uncertainty," Management Science, January

1962.
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M;
n
Max E Z DI
J:l i=2
subject to
M;
Pr (B.. = 1}z.. > L > & j =1, , n
L ij = =
i=2
My k-1 | Mj
Pr Zk<Xl‘Cl+.Z .Z(Bljul)zl‘]-l-y —CJ+1 > My
i=2 j=11i=2

Since borrowing and lending are not considered by Naslund and
Whinston, the financial opportunities (i = 1) have been left out in the
representation above. A model similar to the one described has also

been developed by Hillier, !

The basic difference between the chance-constrained models and
Models I-IV is that the former leave the determination of how much
should be consumed and what risks to accept outside the formal model.
Thus, tradeoffs in these variables can only be evaluated informally
even though these considerations are no more subjective than for ex-
ample the probability distributions of return which are part of the
model. In Models I-IV, on the other hand, these tradeoffs are auto-
matically evaluated since a utility function (of consumption} is present
which appraises all possible {ultimate) outcomes of all possible deci-

sions. Thus the relation between the chance-constrained investment

Frederick Hillier, ""The Evaluation of Risky Interrelated Invest-
ments," Technical Report No. 73 Stanford, California, Department of
Statistics, Stanford University, July 1964, pp. 48-55.
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models of Naslund and Whinston and of Hillier and Models I-IV is

analogous to that between classical and modern decision theory. 1

4.3.3 Long-Run Investment Models

Long-run investment models essentially fall into two classes:those
which strive to make the long-run capital position as favorable as pos-
sible and ilioze which strive to maximize the probability of surviving

infinitely.

Models which maximize the long-run capital position. Consider

the case in which it is desired to maximize E[ﬁ(xj)( xl] at some future

M
. . . - N .
decision point j when Xj+l = -LZ (Bi-r)zij +rxj, j =2, ..., and
1=

X, > 0, that is, all returns are made available for reinvestment in
the next period. It has then been shown that when ﬁ(xj) has the form
(2-15), (2-16), or (2-92), the optimal investment strategies are of the
form z.lj(x) = pi({Bi}’ r)x for all j where P, is a proportion. In other
words, the optimal investment strategy calls for investing a propor-
tion of current capital i1 each opportunity, the proportions being
dependent only upon the distr:bution function of returns. 2 As may
be seen from (2-35), {2-39}, and {2-43), this property of the opti-
mal investment strategies is not lost when the objective is the

.maximization of utility from

For a comparison between classical statistics and modern decision

'~ theory, see, for example, Duncan Luce and Howard Raiffa, op. cit.,
pp. 318-324, o

2 Thomas Ferguson, '"Betting Systems Which Minimize the Probability
of Ruin, '" Journal of the Society of Industrial and Applied
Mathematics, September 1965, p. 799.




consumption over time {given that the one-period utility function of

consumption is of the form (2-15}, (2-16), or {2-92) ) and the individual
receives a non-capital income stream. Analogously, we find that when
the utility function u{x} = ~e_’\{X(‘y > 0}, the property of nondependence

on x which characterizes the optimal strategy in the long-run invest-

ment modell also holds in Model IV,

The particular model calling for the maximization of E[log xj/xl.]
has been considered by several authors including Kelley, 2 Breiman,
Bellman, % 2nd Latané. > The optimal strategy in this case calls for
maximizing the expected logarithm of capital {(at the end of the period)
in each period. Breiman also found that this policy is asymptotically
optimal when the objective is to minimize the expected time to reach a
fixed level of resou.rces.6 Moreover, this strategy turns out to be
asymptotically optimal when the objective is to maximize the expected
growth of capital.7 As was noted in 2.7, an individual who obeys Model
III {where u{c) = log c¢) will also behave so as to maximize the expected

growth rate of the capital (remaining after the allotment to current

1 1pid., p. 800.

2 J. L. Kelley, ""A New Interpretation of Information Rate, Bell System
Technical Journal, 35, 1956.

3 Leo Breiman, "Optimal Gambling Systems for Favorable Games, "
Fourth Berkeley Symposium on Probability and Mathematical Statis-
tics, Berkeley, University of California Press, 1961.

4 Richard Bellman, Adaptive Control Processes, Princeton, Princeton
University Press, 1961, pp. 222-229.

5 Henry Latané, "Criteria for Choice Among Risky Ventures,' Journal
of Political Economy, April 1959, and Henry Latane, "Investment
Criteria: A Three Asset Portfolio Balance Model,'"" Review of Eco-
nomics and Statistics, November 1963.

Breiman, '""Optimal Gambling Systems . . . "

See Breiman, ''Optimal Gambling Systems . . .''; Breiman,

"Investment Policies . . . ,'"; and Brown, op. cit,
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consumption) plus the capitalized value of his (certain) non-capital

income stream.

Survival models. Ferguson1 and Truelove® have examined the

problem of optimal investment behaviour when there is a fixed cost-of-
living charge {(consumption level) but no borrowing and no non-capital
income stream. They postulate the objective of the individual to be the
maximization of the probability of surviving infinitely, that is, of

being always able to pay the cost-of-living charge.

In these models, then, the consumption level is fixed and exogene-
ous. However, there is clearly a tradeoff possibility between the level
of consumption and the survival probability since the latter is a func-
tion of the former and it clearly makes a difference M you live, i.e.,
how much you consume while you survive. By introducing a utility
function defined for all consumption levels and making the level of con-
sumption a decision variable, Models I-1V, while not concerned with
survival explicitly, nevertheless have the notion of survival built in.
The notion of survival is in fact implicit in the utility function (of con-
sumption) itself. If we associate survival with positive consumption in
each period, it was shown in 2.7 that unless the individual starts out
in the trapping state (in which case he would perish immediately), he
will survive infinitely with probability 1 in Models II and Il while the

survival probability may be less than I in Model I. Since these

' op. cit.

2 AT, Truelove, "A Multistage Stochastic Investment Process," RM-
4025-PR, Santa Monica, The RAND Corporation, March 1364.
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implications are directly related to the lower bhound of the one-period
utility function of consumption {see Corollary 1), we find that indivi-
duals whose utility functions have no lower bound in fact place a pre-

mium on survival.

4, 3.4 Other Investment Models

All models discussed so far share the characteristic that invest-
ment decisions are made at specified, discrete points in time. How-
ever, models have also been constructed in which investment oppor-
tunities arrive randomly in time. Unless immediately accepted, each
such opportunity is considered lost forever. The problem then be-
comes to find optimal decision rules for accepting and rejecting oppor-
tunities, which are generally viewed as long-term in nature, so as to
have funds available for highly favorable opportunities which have not
yet appeared while at the same time taking advantage of as many op-
portunities as possible. This problem has been examined by Fisherl
and by Kaufman. 2 While consumption and borrowing and lending are
not considered, Fisher does consider the case when the investor re-

ceives a non-capital income stream. 3

Since no meaningful basis for comparing these models with Models
I-IV seems to exist, we shall not review these models further. How-
ever, it appears that Models I-1V may well generalize to the random

arrival situation for the case in which the investment opportunities are

James Fisher, ""A Class of Stochastic Investment Problems, "
Operations Research, January-February 1961,

2 Gordon Kaufman, ''Sequential Investment Analysis Under Uncer-
tainty, ' Journal of Business, January 1963.

James Fisher, op. cit.
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governed by a Markov process in which the prevailing state is not

necessarily known at the time of decision.

4.4 THE STATE-PREFERENCE APPROACH: A BRIEF COMMENT

This study would not be complete without at least a brief mention of
the state-preference approach to decision-making under uncertainty,
This approach takes cognition of the fact that preferences may depend
upon which of several possible states of the world obtains at a given
time in the future. It therefore represents an important step toward
a more realistic theory of intertemporal decision since the utility func-
tion would now be time-state-dependent rather than just time-dependent
as in the case of Models I-IV, for example. The pioneering work in
this area is that of Arrowl; important contributions have also been

2,3,4

made by Hirshleifer, No direct application of this approach has

been made to the problem addressed in this study.

4.5 SUMMARY
The principal characteristics of the different classes of normative
consumption and investment models discussed in this study have been

summarized in Table VIII. Since the headings of the various entries

of Risk-Bearing,' Review of Economic Studies, April 1964.

2 Jack Hirshleifer, "Efficient Allocation of Capital in an Uncertain
World,'" The American Economic Review, May 1964.

Jack Hirshleifer, "Investment Decision Under Uncertainty: Choice-
Theoretic Approaches,' The Quarterly Journal of Economics,
November 1965,

Jack Hirshleifer, "Investment Decision Under Uncertainty: Applica-
tions of the State-Preference Approach, '’ to appear in The Quarterly
Journal of Economics.
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are self-explanatory, no further comments beyond what has already

been said appear warranted.
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